【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积

一、前述

怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结。

二、具体

1、混淆矩阵

混淆矩阵如图:

相关公式:

公式解释:

fp_rate:

tp_rate:

recall:(召回率)

值越大越好

presssion:(准确率)

TP:本来是正例,通过模型预测出来是正列

TP+FP:通过模型预测出来的所有正列数(其中包括本来是负例,但预测出来是正列)

值越大越好

2、ROC曲线

过程:对第一个样例,预测对,阈值是0.9,所以曲线向上走,以此类推。

对第三个样例,预测错,阈值是0.7 ,所以曲线向右走,以此类推。

几种情况:

所以得出结论,曲线在对角线以上,则准确率好。

3、AUC面积

M是样本中正例数

N是样本中负例数

其中累加解释是把预测出来的所有概率结果按照分值升序排序,然后取正例所对应的索引号进行累加

通过AUC面积预测出来的可以知道好到底有多好,坏到底有多坏。因为正例的索引比较大,则AUC面积越大。

总结:

原文地址:https://www.cnblogs.com/LHWorldBlog/p/8656439.html

时间: 2024-10-10 01:12:22

【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积的相关文章

机器学习模型评估指标汇总

在使用机器学习算法过程中,针对不同的问题需要不用的模型评估标准,这里统一汇总.主要以两大类分类与回归分别阐述. 一.分类问题 1.混淆矩阵 混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息.矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别. 真正(True Positive , TP):被模型预测为正的正样本. 假正(False Positive , FP):被模型预测为正的负样本. 假负(False Negative , FN):被模型预测为负的正样本. 真

ROC曲线,AUC面积

1. 什么是ROC曲线? ROC曲线是Receiver operating characteristic curve的简称,中文名为“受试者工作特征曲线”.ROC曲线源于军事领域,横坐标为假阳性率(False positive rate,FPR),纵坐标为真阳性率(True positive rate,TPR). 假阳性率 FPR = FP/N ---N个负样本中被判断为正样本的个数占真实的负样本的个数  真阳性率 TPR = TP/P ---P个正样本中被预测为正样本的个数占真实的正样本的个数

机器学习基础 | 分类模型评估指标

目录 成对指标 综合指标 图形指标 在处理机器学习的分类问题中,我们需要评估分类结果的好坏以选择或者优化模型,本文总结二分类任务中常用的评估指标.对于多分类任务的评估指标,可以参考这篇文章 先从我们最熟知的混淆矩阵(confusion matrix)说起. source 鉴于混淆矩阵看着比较抽象,可以参考下图 常用的评估指标可以分为3类: 成对指标,包括正确率(精度)&错误率,Precision&Reall,TPR(Sentitivity)&TNR(Specificity)等; 综

【深度学习】常用的模型评估指标

"没有测量,就没有科学."这是科学家门捷列夫的名言.在计算机科学中,特别是在机器学习的领域,对模型的测量和评估同样至关重要.只有选择与问题相匹配的评估方法,我们才能够快速的发现在模型选择和训练过程中可能出现的问题,迭代地对模型进行优化.本文将总结机器学习最常见的模型评估指标,其中包括: precision recall F1-score PRC ROC和AUC IOU 从混淆矩阵谈起 看一看下面这个例子:假定瓜农拉来一车西瓜,我们用训练好的模型对这些西瓜进行判别,显然我们可以使用错误率

分类模型评估指标

对于分类模型的评价指标主要有错误率 .准确率.查准率.查全率.混淆矩阵.F1值.AUC和ROC. 1.1 错误率和准确率 错误率(Error rate):通常把分类错误的样本数占总样本总数的比例称为"错误率". 准确率(Accuracy):是指分类正确的样本数占样本总数的比例,即准确率=1-错误率. 1.2 查准率.查全率.混淆矩阵和F1值 查准率(Precision):又称精确率,预测为正例的样本中,真正为正例的比率. 查全率(Recall):又称召回率,预测为正例的真实正例(TP)

混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表

Spark ML机器学习库评估指标示例

本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估

R语言ROC曲线下的面积 - 评估逻辑回归中的歧视

原文链接:http://tecdat.cn/?p=6310 在讨论ROC曲线之前,首先让我们在逻辑回归的背景下考虑校准和区分之间的区别. 良好的校准是不够的 对于模型协变量的给定值,我们可以获得预测的概率.如果观察到的风险与预测的风险(概率)相匹配,则称该模型已被很好地校准.也就是说,如果我们要分配一组值的大量观察结果,这些观察结果的比例应该接近20%.如果观察到的比例是80%,我们可能会同意该模型表现不佳 - 这低估了这些观察的风险. 我们是否应满足于使用模型,只要它经过良好校准?不幸的是.为

机器学习之分类器性能指标之ROC曲线、AUC值

分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性. 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例:(1-Specificity) 纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive