【BZOJ2337】Xor和路径(高斯消元)

【BZOJ2337】Xor和路径(高斯消元)

题面

BZOJ

题解

我应该多学点套路:

对于xor之类的位运算,要想到每一位拆开算贡献

所以,对于每一位拆开来看
好了,既然是按位来算
我们就只需要计算从\(1\)号点开始
到\(n\)的路径中,路径的异或和为\(1\)的概率
显然没法算

还是一样的
考虑高斯消元
对于每一个节点\(i\)
\[f[i]=\sum_{w(u,i)=1}\frac{1-f[u]}{op[u]}+\sum_{w(u,i)=1}\frac{f[u]}{op[u]}\]
其中,\(op\)是出度

所以可以美滋滋的高斯消元
然后计算了
复杂度\(O(n^3logw)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 150
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
struct Line{int v,next,w;}e[MAX*MAX];
int h[MAX],cnt=2;
int op[MAX];
int n,m;
double g[MAX][MAX];
double f[MAX];
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;op[u]++;}
void Build(int l)
{
    memset(g,0,sizeof(g));
    for(int i=1;i<=n;++i)g[i][i]=1;
    for(int u=1;u<n;++u)
        for(int i=h[u];i;i=e[i].next)
            if(e[i].w&(1<<l))g[u][e[i].v]+=1.0/op[u],g[u][n+1]+=1.0/op[u];
            else g[u][e[i].v]-=1.0/op[u];
}
void Guess()
{
    for(int i=1;i<=n;++i)
    {
        double bs=g[i][i];
        for(int j=1;j<=n+1;++j)g[i][j]/=bs;
        for(int j=i+1;j<=n;++j)
        {
            bs=g[j][i];
            for(int k=1;k<=n+1;++k)
                g[j][k]-=g[i][k]*bs;
        }
    }
    for(int i=n;i;--i)
    {
        f[i]=g[i][n+1];
        for(int j=i-1;j;--j)
            g[j][n+1]-=f[i]*g[j][i];
    }
}
int main()
{
    n=read();m=read();
    for(int i=1;i<=m;++i)
    {
        int u=read(),v=read(),w=read();
        Add(u,v,w);
        if(u!=v)Add(v,u,w);
    }
    double ans=0;
    for(int i=0;i<=30;++i)
    {
        Build(i);Guess();
        ans+=(1<<i)*f[1];
    }
    printf("%.3lf\n",ans);
    return 0;
}

原文地址:https://www.cnblogs.com/cjyyb/p/8405747.html

时间: 2024-10-12 21:14:55

【BZOJ2337】Xor和路径(高斯消元)的相关文章

bzoj2337 XOR和路径——高斯消元

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 异或就一位一位考虑: x为到n的概率,解方程组即可: 考虑了n就各种蜜汁错误,所以索性不管n了,这样的题好像不管n比较方便. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; int const M=10

【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元

[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少(妈呀好啰嗦),设d[i]表示i的度数.然后对于某条边(a,b),如果它的权值是1,那么f[b]+=(1-f[a])/d[a]:如果它的权值是0,那么f[b]+=f[a]/d[a],然后我们移个项,就变成了一堆方程组求解,直接高斯消元. 别忘了f[n]=0! #include <cstdio> #i

【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Status][Discuss] Description 几乎是一路看题解过来了.. 拖了一个星期的题目- - 已然不会概率DP(说得好像什么时候会过一样),高斯消元(打一次copy一遍). 发现异或题目的新解决方法:按位处理.. 发现DP新方法:高斯消元. f[k][i]代表第k位权值起点为i到终点时答案

【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)

2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description Input Output Sample Input Sample Output HINT Source Day2 [分析] 这题终于自己打出来了高斯消元.没有对比代码了... 很心酸啊..调试的时候是完全没有方向的,高斯消元还要自己一步步列式子然后消元解..[为什么错都不知道有时候 这题显然是不能

bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】

首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望,因为从1到n和从n到1一样,所以选择倒着推,即, if(deg[e[i].va]==0) \[ x[u]=\sum_{v}^{v\subset son(u)}\frac{x[v]}{deg[i]} \] else \[ x[u]=\sum_{v}^{v\subset son(u)}\frac{1-x[v])

关于高斯消元解决xor问题的总结

我觉得xor这东西特别神奇,最神奇的就是这个性质了 A xor B xor B=A 这样就根本不用在意重复之类的问题了 关于xor的问题大家可以去膜拜莫队的<高斯消元解XOR方程组>,里面写的很详细 我来扯两道bzoj上的例题好了 bzoj2115,求1-N最长xor路径,根据那个神奇的性质,我们先随便找一条1-n的路径作为标准路径 任意一条1-N的路径都等价于标准路径和某些环的xor 怎么找环?很简单,bfs下去,设d[x]表示1到x的一条路径xor值,如果到一条边x-->y时y已经访

ACM学习历程—HDU 3915 Game(Nim博弈 &amp;&amp; xor高斯消元)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所有xor和为0. 那么自然变成了n个数里面取出一些数,使得xor和为0,求取法数. 首先由xor高斯消元得到一组向量基,但是这些向量基是无法表示0的. 所以要表示0,必须有若干0来表示,所以n-row就是消元结束后0的个数,那么2^(n-row)就是能组成0的种数. 对n==row特判一下. 代码:

2015南阳CCPC E - Ba Gua Zhen 高斯消元 xor最大

Ba Gua Zhen Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 无 Description During the Three-Kingdom period, there was a general named Xun Lu who belonged to Kingdom Wu. Once his troop were chasing Bei Liu, he was stuck in the Ba Gua Zhen from Liang Zhuge.

bzoj 2115: [Wc2011] Xor xor高斯消元

2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图中可能有重边或自环. Output 仅包含一个整数,表示最大的XOR和(十进制结