TCP/IP详解--TCP连接中TIME_WAIT状态过多

转载自http://blog.csdn.net/yusiguyuan/article/details/21445883

TIMEWAIT状态本身和应用层的客户端或者服务器是没有关系的。仅仅是主动关闭的一方,在使用FIN|ACK|FIN|ACK四分组正常关闭TCP连接的时候会出现这个TIMEWAIT。服务器在处理客户端请求的时候,如果你的程序设计为服务器主动关闭,那么你才有可能需要关注这个TIMEWAIT状态过多的问题。如果你的服务器设计为被动关闭,那么你首先要关注的是CLOSE_WAIT。

原则

TIMEWAIT并不是多余的。在TCP协议被创造,经历了大量的实际场景实践之后,TIMEWAIT出现了,因为TCP主动关闭连接的一方需要TIMEWAIT状态,它是我们的朋友。这是《UNIX网络编程》的作者----Steven对TIMEWAIT的态度。

TIMEWAIT是友好的

TCP要保证在所有可能的情况下使得所有的数据都能够被正确送达。当你关闭一个socket时,主动关闭一端的socket将进入TIME_WAIT状态,而被动关闭一方则转入CLOSED状态,这的确能够保证所有的数据都被传输。当一个socket关闭的时候,是通过两端四次握手完成的,当一端调用close()时,就说明本端没有数据要发送了。这好似看来在握手完成以后,socket就都可以处于初始的CLOSED状态了,其实不然。原因是这样安排状态有两个问题, 首先,我们没有任何机制保证最后的一个ACK能够正常传输,第二,网络上仍然有可能有残余的数据包(wandering duplicates),我们也必须能够正常处理。
TIMEWAIT就是为了解决这两个问题而生的。

1.假设最后一个ACK丢失了,被动关闭一方会重发它的FIN。主动关闭一方必须维持一个有效状态信息(TIMEWAIT状态下维持),以便能够重发ACK。如果主动关闭的socket不维持这种状态而进入CLOSED状态,那么主动关闭的socket在处于CLOSED状态时,接收到FIN后将会响应一个RST。被动关闭一方接收到RST后会认为出错了。如果TCP协议想要正常完成必要的操作而终止双方的数据流传输,就必须完全正确的传输四次握手的四个节,不能有任何的丢失。这就是为什么socket在关闭后,仍然处于TIME_WAIT状态的第一个原因,因为他要等待以便重发ACK。

2.假设目前连接的通信双方都已经调用了close(),双方同时进入CLOSED的终结状态,而没有走TIME_WAIT状态。会出现如下问题,现在有一个新的连接被建立起来,使用的IP地址与端口与先前的完全相同,后建立的连接是原先连接的一个完全复用。还假定原先的连接中有数据报残存于网络之中,这样新的连接收到的数据报中有可能是先前连接的数据报。为了防止这一点,TCP不允许新连接复用TIME_WAIT状态下的socket。处于TIME_WAIT状态的socket在等待两倍的MSL时间以后(之所以是两倍的MSL,是由于MSL是一个数据报在网络中单向发出到认定丢失的时间,一个数据报有可能在发送途中或是其响应过程中成为残余数据报,确认一个数据报及其响应的丢弃的需要两倍的MSL),将会转变为CLOSED状态。这就意味着,一个成功建立的连接,必然使得先前网络中残余的数据报都丢失了。

大量TIMEWAIT在某些场景中导致的令人头疼的业务问题

大量TIMEWAIT出现,并且需要解决的场景
      在高并发短连接的TCP服务器上,当服务器处理完请求后立刻按照主动正常关闭连接。。。这个场景下,会出现大量socket处于TIMEWAIT状态。如果客户端的并发量持续很高,此时部分客户端就会显示连接不上。
我来解释下这个场景。主动正常关闭TCP连接,都会出现TIMEWAIT。为什么我们要关注这个高并发短连接呢?有两个方面需要注意:
1. 高并发可以让服务器在短时间范围内同时占用大量端口,而端口有个0~65535的范围,并不是很多,刨除系统和其他服务要用的,剩下的就更少了。
2. 在这个场景中,短连接表示“业务处理+传输数据的时间 远远小于 TIMEWAIT超时的时间”的连接。这里有个相对长短的概念,比如,取一个web页面,1秒钟的http短连接处理完业务,在关闭连接之后,这个业务用过的端口会停留在TIMEWAIT状态几分钟,而这几分钟,其他HTTP请求来临的时候是无法占用此端口的。单用这个业务计算服务器的利用率会发现,服务器干正经事的时间和端口(资源)被挂着无法被使用的时间的比例是 1:几百,服务器资源严重浪费。(说个题外话,从这个意义出发来考虑服务器性能调优的话,长连接业务的服务就不需要考虑TIMEWAIT状态。同时,假如你对服务器业务场景非常熟悉,你会发现,在实际业务场景中,一般长连接对应的业务的并发量并不会很高)
综合这两个方面,持续的到达一定量的高并发短连接,会使服务器因端口资源不足而拒绝为一部分客户服务。同时,这些端口都是服务器临时分配,无法用SO_REUSEADDR选项解决这个问题:(

一对矛盾

TIMEWAIT既友好,又令人头疼。
但是我们还是要抱着一个友好的态度来看待它,因为它尽它的能力保证了服务器的健壮性。

可行而且必须存在,但是不符合原则的解决方式

1. linux没有在sysctl或者proc文件系统暴露修改这个TIMEWAIT超时时间的接口,可以修改内核协议栈代码中关于这个TIMEWAIT的超时时间参数,重编内核,让它缩短超时时间,加快回收;
2. 利用SO_LINGER选项的强制关闭方式,发RST而不是FIN,来越过TIMEWAIT状态,直接进入CLOSED状态。详见我的博文《TCP之选项SO_LINGER

我如何看待这个问题

为什么说上述两种解决方式我觉得可行,但是不符合原则?
我首先认为,我要依靠TIMEWAIT状态来保证我的服务器程序健壮,网络上发生的乱七八糟的问题太多了,我先要服务功能正常。
那是不是就不要性能了呢?并不是。如果服务器上跑的短连接业务量到了我真的必须处理这个TIMEWAIT状态过多的问题的时候,我的原则是尽量处理,而不是跟TIMEWAIT干上,非先除之而后快:)如果尽量处理了,还是解决不了问题,仍然拒绝服务部分请求,那我会采取分机器的方法,让多台机器来抗这些高并发的短请求。持续十万并发的短连接请求,两台机器,每台5万个,应该够用了吧。一般的业务量以及国内大部分网站其实并不需要关注这个问题,一句话,达不到需要关注这个问题的访问量。
真正地必须使用上述我认为不合理的方式来解决这个问题的场景有没有呢?答案是有。
像淘宝、百度

、新浪、京东商城这样的站点,由于有很多静态小图片业务,如果过度分服会导致需要上线大量机器,多买机器多花钱,得多配机房,多配备运维工程师来守护这些机器,成本增长非常严重。。。这个时候就要尽一切可能去优化。
题外话,服务器上的技术问题没有绝对,一切都是为业务需求服务的。

如何尽量处理TIMEWAIT过多

sysctl改两个内核参数就行了,如下:
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
简单来说,就是打开系统的TIMEWAIT重用和快速回收,至于怎么重用和快速回收,这个问题我没有深究,实际场景中这么做确实有效果。用netstat或者ss观察就能得出结论。
还有些朋友同时也会打开syncookies这个功能,如下:
net.ipv4.tcp_syncookies = 1
打开这个syncookies的目的实际上是:“在服务器资源(并非单指端口资源,拒绝服务有很多种资源不足的情况)不足的情况下,尽量不要拒绝TCP的syn(连接)请求,尽量把syn请求缓存起来,留着过会儿有能力的时候处理这些TCP的连接请求”。
如果并发量真的非常非常高,打开这个其实用处不大。

原文地址:https://www.cnblogs.com/wzj4858/p/8227350.html

时间: 2024-11-13 06:48:09

TCP/IP详解--TCP连接中TIME_WAIT状态过多的相关文章

TCP/IP详解--TCP首部选项中时间戳选项

一.简介 TCP时间戳选项会在TCP包头增加12个字节,以一种比重发超时更精确的方法来启用对RTT 的计算.   二.作用 1) TCP时间戳位于TCP选项中,kind=8:lenth=10:data由timestamp和timestamp echo两个值组成,各4个字节的长度. 2) TCP时间戳理论作用有3个:序列号回绕,乱序的时间判断依据,避免确认二义性,以及计算RTT. 3) TCP时间戳工作方式:双方各自维护自己的时间戳,时间戳的值随时间单调递增(规定为1ms-1s/次,常见值为1ms

TCP/IP详解--TCP首部选项字段的作用

1.TCP首部选项字段多达40B,记下一些常用的东西: 2.选项结束字段(EOP,0x00),占1B,一个报文段仅用一次.放在末尾用于填充,用途是说明:首部已经没有更多的消息,应用数据在下一个32位字开始处 3.无操作字段(NOP, 0x01),占1B,也用于填充,放在选项的开头 4.MSS(最大报文段长度),格式如下:种类(1B,值为2),长度(1B,值为4),数值(2B) 用于在连接开始时确定MSS的大小,如果没有确定,就用默认的(一般实现是536B) 5.窗口扩大因子,格式如下:种类(1B

《TCP/IP详解卷1:协议》第17、18章 TCP:传输控制协议(2)-读书笔记

章节回顾: <TCP/IP详解卷1:协议>第1章 概述-读书笔记 <TCP/IP详解卷1:协议>第2章 链路层-读书笔记 <TCP/IP详解卷1:协议>第3章 IP:网际协议(1)-读书笔记 <TCP/IP详解卷1:协议>第3章 IP:网际协议(2)-读书笔记 <TCP/IP详解卷1:协议>第4章 ARP:地址解析协议-读书笔记 <TCP/IP详解卷1:协议>第5章 RARP:逆地址解析协议-读书笔记 <TCP/IP详解卷1:协

【转】TCP/IP详解学习笔记(二)

TCP/IP详解学习笔记(5)-IP选路,动态选路,和一些细节 1.静态IP选路 1.1.一个简单的路由表 选路是IP层最重要的一个功能之一.前面的部分已经简单的讲过路由器是通过何种规则来根据IP数据包的IP地址来选择路由.这里就不重复了.首先来看看一个简单的系统路由表. Destination     Gateway         Genmask         Flags Metric Ref    Use Iface192.168.11.0    *               255.

TCP/IP详解之一:连接建立、断开

<TCP/IP详解·卷一>看了三遍才算整明白个大概,一直想做个总结. 最初对TCP的印象很简单:丢包重传.流数据.丢包重传很好理解,“流数据”是什么鬼? 知乎上看到个极好的解释:把TCP看作用管子往对端灌水,水是数据,它们之间没有边界,且先发先到:UDP是往对端滚小球,它们之间有明确边界,且可能每个小球速度不同,先滚的不一定先到,得自己处理乱序. 编码上也可看出,TCP的send回调带有dwNumberOfBytesTransferred参数,描述本次网络IO发送了多少字节数据,而不是给它多少

《TCP/IP详解:卷一》-TCP部分讲解

TCP/IP协议 作者:Danbo 2015-7-2 本文为参考TCP/IP详解卷一,某些知识点加上了作者自己的理解,如有错误,欢迎指正,可以微博联系我! TCP包格式和IP包格式如下: TCP的正常建立与关闭 建立连接 TCP协议提供可靠的面向连接服务,采用三次握手建立连接.第一次握手:建立连接时,客户端发送SYN包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认:第二次握手:服务器收到SYN包,向客户端返回ACK(ack=j+1),同时自己也发送一个SYN包(syn=k),

TCP/IP详解学习笔记 这位仁兄写得太好了.(转载)

TCP/IP详解学习笔记   这位仁兄写得太好了 TCP/IP详解学习笔记   这位仁兄写得太好了. http://blog.csdn.net/goodboy1881/category/204448.aspx TCP/IP详解学习笔记(13)-TCP坚持定时器,TCP保活定时器 TCP/IP详解学习笔记(12)-TCP的超时与重传TCP/IP详解学习笔记(11)-TCP交互数据流,成块数据流 TCP/IP详解学习笔记(1)-基本概念 为什么会有TCP/IP协议 在世界上各地,各种各样的电脑运行着

TCP/IP详解 (转)

TCP/IP详解学习笔记(1)-基本概念 为什么会有TCP/IP协议 在世界上各地,各种各样的电脑运行着各自不同的操作系统为大家服务,这些电脑在表达同一种信息的时候所使用的方法是千差万别.就好像圣经中上帝打乱了各地人的口音,让他们无法合作一样.计算机使用者意识到,计算机只是单兵作战并不会发挥太大的作用.只有把它们联合起来,电脑才会发挥出它最大的潜力.于是人们就想方设法的用电线把电脑连接到了一起. 但是简单的连到一起是远远不够的,就好像语言不同的两个人互相见了面,完全不能交流信息.因而他们需要定义

《TCP/IP详解》

[TCP的那些事儿]TCP是个巨复杂的协议,而且不断地改进中.所以学习TCP本身是个比较痛苦的过程,但这个过程却能让人有很多收获.希望这篇快餐科普性文章能在快餐文化下让你对TCP有了解,并可以促发你对基础知识的兴趣和学习欲望. http://coolshell.cn/articles/11564.html http://coolshell.cn/articles/11609.html 大家知道,TCP/IP已成为计算机网络的事实上的标准.在关于TCP/IP的论著中,最有影响的就是两部著作.一部是