●POJ 1113 Wall

题链:

http://poj.org/problem?id=1113

题解:

计算几何,凸包

题意:修一圈围墙把给出的点包围起来,且被包围的点距离围墙的距离不能小于L,求围墙最短为多少。

答案其实就是等于N个点的凸包的周长+半径为L的圆的周长

代码:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 1050
using namespace std;
const double eps=1e-8,Pi=acos(-1.0);
int sign(double x){
	if(fabs(x)<=eps) return 0;
	return x<0?-1:1;
}
struct Point{
	double x,y;
	Point(double _x=0,double _y=0):x(_x),y(_y){}
	void Read(){scanf("%lf%lf",&x,&y);}
};
typedef Point Vector;
bool operator < (const Point A,const Point B){return sign(A.x-B.x)<0||(sign(A.x-B.x)==0&&sign(A.y-B.y)<0);}
bool operator == (const Point A,const Point B){return sign(A.x-B.x)==0&&sign(A.y-B.y)==0;}
Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);}
double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;}
double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;}
Point D[MAXN],H[MAXN];
int N,L;
int Andrew(int dnt){
	int hnt=0,k=0;
	sort(D+1,D+dnt+1);
	dnt=unique(D+1,D+dnt+1)-D-1;
	for(int i=1;i<=dnt;i++){
		while(hnt>1&&(sign((H[hnt]-H[hnt-1])^(D[i]-H[hnt-1])))<=0) hnt--;
		H[++hnt]=D[i];
	} k=hnt;
	for(int i=dnt-1;i>=1;i--){
		while(hnt>k&&(sign((H[hnt]-H[hnt-1])^(D[i]-H[hnt-1])))<=0) hnt--;
		H[++hnt]=D[i];
	}
	return hnt;
}
double GL(Vector A){//Get_Length
	return sqrt(A*A);
}
double GPC(int hnt){//Get_Polygon_Circumference
	double C=0;
	for(int i=1;i<hnt;i++) C+=GL(H[i]-H[i+1]);
	return C;
}
int main(){
	while(~scanf("%d%d",&N,&L)){
		for(int i=1;i<=N;i++) D[i].Read();
		N=Andrew(N);
		printf("%.0f\n",GPC(N)+Pi*2*L);
	}
	return 0;
}

  

原文地址:https://www.cnblogs.com/zj75211/p/8227623.html

时间: 2024-10-07 11:05:51

●POJ 1113 Wall的相关文章

G++和C++ &amp;&amp; POJ 1113 Wall

PS: 次题目虽然叙述点的个数大于等于3但是并不保证凸包是否存在,所以还要判断一下.经常刷题的孩纸可能会遇到用C++ 可用AC的题目用G++ 却 Wrong Answer. 思考过为什么吗? 对于double 类型用%lf 输入用%lf输出是window 环境下VC的标准但不是真正的标准,对于double 类型 真正的标准是用%lf输入,用%f输出.所以把%.0lf改为%.0f 在G++环境下面就可用轻松AC了. 还有%lld 和 %I64d, 同时也学习一下控制精度的技巧,比如 printf(

poj 1113 Wall (凸包模板题)

Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 32808   Accepted: 11137 Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he w

POJ 1113 Wall (凸包)

题目地址:POJ 1113 先求出凸包的周长,然后剩下的弧合起来一定是个半径为l的圆,然后再加上以l为半径的圆的周长即可. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h> #include <

poj 1113 Wall 凸包的应用

题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: 1 #include<iostream> 2 #include<algorithm> 3 #include<cstdio> 4 #include<cmath> 5 using namespace std; 6 int m,n; 7 struct p 8 { 9 double x,y; 10 friend i

POJ 1113 Wall 凸包 裸

LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham算法极角序求凸包会有点小问题,最好用水平序比较好.或者用Melkman算法 /** @Date : 2017-07-13 14:17:05 * @FileName: POJ 1113 极角序求凸包 基础凸包.cpp * @Platform: Windows * @Author : Lweleth (

poj 1113 Wall(标准的凸包果题)

题目链接:http://poj.org/problem?id=1113 Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build

POJ - 1113 Wall (凸包)

http://poj.org/problem?id=1113 题意 求能包围城堡的最小周长,其中必须与城堡每个点相隔L. 分析 答案是凸包周长加上一个圆周长,即包围凸包的一个圆角多边形. 但那些圆角加起来为什么恰好是一个圆呢?每个圆角是以凸包对应的顶点为圆心,给定的L为半径,与相邻两条边的切点之间的一段圆弧. 每个圆弧的两条半径夹角与对应的凸包的内角互补.假设凸包有n条边,则所有圆弧角之和为180°*n-180°*(n-2)=360°.(凸边形内角和为(n-2)*180) 故,围墙周长为=n条平

POJ 1113 Wall 卷包裹法求凸包

Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31199   Accepted: 10521 Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he w

POJ 1113 Wall

这个的题意是绕一圈使得圈上所有点到原来的点的距离都大于等于l.求最短周长. 平移一下,几何乱搞?发现这个弧线刚好是个圆. convexhull..这个我抄的版也不知道是什么算法但是好像靠谱.研究凸包的一个算法. #include<iostream>#include<cstdio>#include<cmath>#include<algorithm>using namespace std;struct point{ int x,y; point(int x=0,