Kubernetes集群监控方案

本文介绍在k8s集群中使用node-exporter、prometheus、grafana对集群进行监控。
其实现原理有点类似ELK、EFK组合。node-exporter组件负责收集节点上的metrics监控数据,并将数据推送给prometheus, prometheus负责存储这些数据,grafana将这些数据通过网页以图形的形式展现给用户。

在开始之前有必要了解下Prometheus是什么?
Prometheus (中文名:普罗米修斯)是由 SoundCloud 开发的开源监控报警系统和时序列数据库(TSDB).自2012年起,许多公司及组织已经采用 Prometheus,并且该项目有着非常活跃的开发者和用户社区.现在已经成为一个独立的开源项目。Prometheus 在2016加入 CNCF ( Cloud Native Computing Foundation ), 作为在 kubernetes 之后的第二个由基金会主持的项目。 Prometheus 的实现参考了Google内部的监控实现,与源自Google的Kubernetes结合起来非常合适。另外相比influxdb的方案,性能更加突出,而且还内置了报警功能。它针对大规模的集群环境设计了拉取式的数据采集方式,只需要在应用里面实现一个metrics接口,然后把这个接口告诉Prometheus就可以完成数据采集了,下图为prometheus的架构图。

Prometheus的特点:
1、多维数据模型(时序列数据由metric名和一组key/value组成)
2、在多维度上灵活的查询语言(PromQl)
3、不依赖分布式存储,单主节点工作.
4、通过基于HTTP的pull方式采集时序数据
5、可以通过中间网关进行时序列数据推送(pushing)
6、目标服务器可以通过发现服务或者静态配置实现
7、多种可视化和仪表盘支持

prometheus 相关组件,Prometheus生态系统由多个组件组成,其中许多是可选的:
1、Prometheus 主服务,用来抓取和存储时序数据
2、client library 用来构造应用或 exporter 代码 (go,java,python,ruby)
3、push 网关可用来支持短连接任务
4、可视化的dashboard (两种选择,promdash 和 grafana.目前主流选择是 grafana.)
4、一些特殊需求的数据出口(用于HAProxy, StatsD, Graphite等服务)
5、实验性的报警管理端(alartmanager,单独进行报警汇总,分发,屏蔽等 )

promethues 的各个组件基本都是用 golang 编写,对编译和部署十分友好.并且没有特殊依赖.基本都是独立工作。
上述文字来自网络!

现在我们正式开始部署工作。
一、环境介绍
操作系统环境:centos linux 7.2 64bit
K8S软件版本: 1.9.0(采用kubeadm方式部署)
Master节点IP: 192.168.115.5/24
Node节点IP: 192.168.115.6/24

二、在k8s集群的所有节点上下载所需要的image

# docker pull prom/node-exporter
# docker pull prom/prometheus:v2.0.0
# docker pull grafana/grafana:4.2.0

三、采用daemonset方式部署node-exporter组件

# cat node-exporter.yaml
---
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
  name: node-exporter
  namespace: kube-system
  labels:
    k8s-app: node-exporter
spec:
  template:
    metadata:
      labels:
        k8s-app: node-exporter
    spec:
      containers:
      - image: prom/node-exporter
        name: node-exporter
        ports:
        - containerPort: 9100
          protocol: TCP
          name: http
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: node-exporter
  name: node-exporter
  namespace: kube-system
spec:
  ports:
  - name: http
    port: 9100
    nodePort: 31672
    protocol: TCP
  type: NodePort
  selector:
    k8s-app: node-exporter

通过上述文件创建pod和service

# kubectl create -f  node-exporter.yaml 

四、部署prometheus组件
1、rbac文件

# cat rbac-setup.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: prometheus
rules:
- apiGroups: [""]
  resources:
  - nodes
  - nodes/proxy
  - services
  - endpoints
  - pods
  verbs: ["get", "list", "watch"]
- apiGroups:
  - extensions
  resources:
  - ingresses
  verbs: ["get", "list", "watch"]
- nonResourceURLs: ["/metrics"]
  verbs: ["get"]
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: prometheus
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: prometheus
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: prometheus
subjects:
- kind: ServiceAccount
  name: prometheus
  namespace: kube-system

2、以configmap的形式管理prometheus组件的配置文件

# cat configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: kube-system
data:
  prometheus.yml: |
    global:
      scrape_interval:     15s
      evaluation_interval: 15s
    scrape_configs:

    - job_name: ‘kubernetes-apiservers‘
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https

    - job_name: ‘kubernetes-nodes‘
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics

    - job_name: ‘kubernetes-cadvisor‘
      kubernetes_sd_configs:
      - role: node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor

    - job_name: ‘kubernetes-service-endpoints‘
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name

    - job_name: ‘kubernetes-services‘
      kubernetes_sd_configs:
      - role: service
      metrics_path: /probe
      params:
        module: [http_2xx]
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__address__]
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.example.com:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        target_label: kubernetes_name

    - job_name: ‘kubernetes-ingresses‘
      kubernetes_sd_configs:
      - role: ingress
      relabel_configs:
      - source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
        regex: (.+);(.+);(.+)
        replacement: ${1}://${2}${3}
        target_label: __param_target
      - target_label: __address__
        replacement: blackbox-exporter.example.com:9115
      - source_labels: [__param_target]
        target_label: instance
      - action: labelmap
        regex: __meta_kubernetes_ingress_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_ingress_name]
        target_label: kubernetes_name

    - job_name: ‘kubernetes-pods‘
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
        action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_pod_name]
        action: replace
        target_label: kubernetes_pod_name

3、Prometheus deployment 文件

# cat prometheus.deploy.yml
---
apiVersion: apps/v1beta2
kind: Deployment
metadata:
  labels:
    name: prometheus-deployment
  name: prometheus
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
  template:
    metadata:
      labels:
        app: prometheus
    spec:
      containers:
      - image: prom/prometheus:v2.0.0
        name: prometheus
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: "/prometheus"
          name: data
        - mountPath: "/etc/prometheus"
          name: config-volume
        resources:
          requests:
            cpu: 100m
            memory: 100Mi
          limits:
            cpu: 500m
            memory: 2500Mi
      serviceAccountName: prometheus
      volumes:
      - name: data
        emptyDir: {}
      - name: config-volume
        configMap:
          name: prometheus-config       

4、Prometheus service文件

# cat prometheus.svc.yml
---
kind: Service
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus
  namespace: kube-system
spec:
  type: NodePort
  ports:
  - port: 9090
    targetPort: 9090
    nodePort: 30003
  selector:
app: prometheus

5、通过上述yaml文件创建相应的对象

# kubectl create -f  rbac-setup.yaml
# kubectl create -f  configmap.yaml
# kubectl create -f  prometheus.deploy.yml
# kubectl create -f  prometheus.svc.yml 



Node-exporter对应的nodeport端口为31672,通过访问http://192.168.115.5:31672/metrics 可以看到对应的metrics

prometheus对应的nodeport端口为30003,通过访问http://192.168.115.5:30003/target 可以看到prometheus已经成功连接上了k8s的apiserver

可以在prometheus的WEB界面上提供了基本的查询K8S集群中每个POD的CPU使用情况,查询条件如下:

sum by (pod_name)( rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m] ) )


上述的查询有出现数据,说明node-exporter往prometheus中写入数据正常,接下来我们就可以部署grafana组件,实现更友好的webui展示数据了。

五、部署grafana组件
1、grafana deployment配置文件

# cat grafana-deploy.yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: grafana-core
  namespace: kube-system
  labels:
    app: grafana
    component: core
spec:
  replicas: 1
  template:
    metadata:
      labels:
        app: grafana
        component: core
    spec:
      containers:
      - image: grafana/grafana:4.2.0
        name: grafana-core
        imagePullPolicy: IfNotPresent
        # env:
        resources:
          # keep request = limit to keep this container in guaranteed class
          limits:
            cpu: 100m
            memory: 100Mi
          requests:
            cpu: 100m
            memory: 100Mi
        env:
          # The following env variables set up basic auth twith the default admin user and admin password.
          - name: GF_AUTH_BASIC_ENABLED
            value: "true"
          - name: GF_AUTH_ANONYMOUS_ENABLED
            value: "false"
          # - name: GF_AUTH_ANONYMOUS_ORG_ROLE
          #   value: Admin
          # does not really work, because of template variables in exported dashboards:
          # - name: GF_DASHBOARDS_JSON_ENABLED
          #   value: "true"
        readinessProbe:
          httpGet:
            path: /login
            port: 3000
          # initialDelaySeconds: 30
          # timeoutSeconds: 1
        volumeMounts:
        - name: grafana-persistent-storage
          mountPath: /var
      volumes:
      - name: grafana-persistent-storage
        emptyDir: {}

2、grafana service配置文件

# cat grafana-svc.yaml
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: kube-system
  labels:
    app: grafana
    component: core
spec:
  type: NodePort
  ports:
    - port: 3000
  selector:
    app: grafana
component: core

3、grafana ingress配置文件
# cat grafana-ing.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
   name: grafana
   namespace: kube-system
spec:
   rules:
   - host: k8s.grafana
     http:
       paths:
       - path: /
         backend:
          serviceName: grafana
          servicePort: 3000

通过访问traefik的webui可以看到k8s.grafana服务发布成功

修改hosts解析,访问测试


也可以直接访问nodeport端口

默认用户名和密码都是admin

配置数据源为prometheus

导入面板,可以直接输入模板编号315在线导入,或者下载好对应的json模板文件本地导入,面板模板下载地址https://grafana.com/dashboards/315

导入面板之后就可以看到对应的监控数据了。



这里要说明一下,在测试过程中,导入编号为162的模板,发现只有部分数据,且pod的名称显示不友好。模板地址https://grafana.com/dashboards/162,详见下图。

六、后记
这里存在一些问题后续要继续研究解决。
1、prometheus的数据存储采用emptydir。如果Pod被删除,或者Pod发生迁移,emptyDir也会被删除,并且永久丢失。后续可以在K8S集群外部再配置一个Prometheus系统来永久保存监控数据, 两个prometheus系统之间通过配置job自动进行数据拉取。
2、Grafana的配置数据存储采用emptydir。如果Pod被删除,或者Pod发生迁移,emptyDir也会被删除,并且永久丢失。我们也可以选择将grafana配置在k8s外部,数据源选择K8S集群外部的prometheus即可。
3、关于监控项的报警(alertmanager)尚未配置。

参考文档,感谢作者分享!
https://www.kubernetes.org.cn/3418.html
https://blog.qikqiak.com/post/kubernetes-monitor-prometheus-grafana/
https://github.com/giantswarm/kubernetes-prometheus/tree/master/manifests
https://segmentfault.com/a/1190000013245394

原文地址:http://blog.51cto.com/ylw6006/2084403

时间: 2024-11-06 03:39:35

Kubernetes集群监控方案的相关文章

k8s实践(十一):heapster+influxdb+grafana实现kubernetes集群监

环境说明: 主机名 操作系统版本 ip docker version kubelet version 配置 备注 master Centos 7.6.1810 172.27.9.131 Docker 18.09.6 V1.14.2 2C2G master主机 node01 Centos 7.6.1810 172.27.9.135 Docker 18.09.6 V1.14.2 2C2G node节点 node02 Centos 7.6.1810 172.27.9.136 Docker 18.09.

kubernetes集群全栈监控报警方案kube-prometheus

参考文档 http://www.servicemesher.com/blog/prometheus-operator-manual/ https://github.com/coreos/prometheus-operator https://github.com/coreos/kube-prometheus 背景环境 kubernetes集群1.13版本,纯二进制版本打造,参考k8s1.13集群部署 coreos/kube-prometheus从coreos/prometheus-operato

Kubernetes集群资源监控

Kubernetes监控指标 集群监控? 节点资源利用率? 节点数? 运行Pods Pod监控? Kubernetes指标(pod) DESIRED:预期的状态CURRENT:当前的状态UP-TO-DATE:更新后的状态AVAILABLE:可以用的状态 ? 容器指标(cpu,mem)? 应用程序 Kubernetes监控方案 cAdvisor+InfluxDB+Grafana:cAdvisor(k8s自身的组件)采集的数据,Heapster会去收集数据存在InfluxDB中,Grafana对In

【prometheus】kubernetes集群性能监控

手动安装方案——阿里云解决方案(部署失败): https://www.jianshu.com/p/1c7ddf18e8b2 手动安装方案—— (部署成功,但是只有CPU内存等的监控信息,没有GPU的监控信息): https://github.com/camilb/prometheus-kubernetes/tree/master helm安装方案——GPU-Monitoring-tools解决方案(部署成功): 参考:http://fly-luck.github.io/2018/12/10/gp

Rancher2.x 一键式部署 Prometheus + Grafana 监控 Kubernetes 集群

目录 1.Prometheus & Grafana 介绍 2.环境.软件准备 3.Rancher 2.x 应用商店 4.一键式部署 Prometheus 5.验证 Prometheus + Grafana 1.Prometheus & Grafana 介绍 Prometheus 是一套开源的系统监控.报警.时间序列数据库的组合,Prometheus 基本原理是通过 Http 协议周期性抓取被监控组件的状态,而通过 Exporter Http 接口输出这些被监控的组件信息,而且已经有很多 E

K8S集群监控—cAdvisor+Heapster+InfluxDB+Grafana

容器的监控方案有多种,如单台docker主机的监控,可以使用docker stats或者cAdvisor web页面进行监控.但针对于Kubernetes这种容器编排工具而言docker单主机的监控已经不足以满足需求,在Kubernetes的生态圈中也诞生了一个个监控方案,如常用的dashboard,部署cAdvisor+Heapster+InfluxDB+Grafana监控方案,部署Prometheus和Grafana监控方案等.在这里主要讲述一下cAdvisor+Heapster监控方案.

Kubernetes集群

Kubernetes已经成为当下最火热的一门技术,未来一定也会有更好的发展,围绕着云原生的周边产物也越来越多,使得上云更加便利更加有意义,本文主要讲解一些蔚来汽车从传统应用落地到Kubernetes集群的一些实践经验,提供给大家在落地之前的一些思考和注意点,并且让大家在实施的时候能够有一些借鉴,提供一些使用过程中的注意事项.项目背景 Docker诞生于2013年初,随着时间的推移Docker项目也逐渐火热起来,也形成了自己的生态,为了能够灵活调度容器,编排技术也变得非常重要,Swarm,Meso

基于Python+Django的Kubernetes集群管理平台

原文出自[听云技术博客]:http://blog.tingyun.com/web/article/detail/1345 时至今日,接触kubernetes也有一段时间了,而我们的大部分业务也已经稳定地运行在不同规模的kubernetes集群上,不得不说,无论是从应用部署.迭代,还是从资源调度管理等方面都有其难以言喻的优势,但是随着业务的不断增长,以及服务的多元化,容器的体量与管理的难度也随之增长. 浅述Kubernetes集群日常管理维护中的一些痛点: 1.较为庞大的集群规模及容器数量维护管理

kubernetes 集群的安装部署

本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: 首先kubernetes得官方文档我自己看着很乱,信息很少,所以结合了很多博客搭建的 其次因为既然用到docker,当然离不开kubernetes管理,还有swarm,前者管理复杂,但功能齐全 这里仅仅是安装部署,还未使用,具体使用出现问题后续更新 前提条件 系统时centos7上 关闭防火墙 systemctl stop firewalld.service