Aggregation Models

这是Coursera上《机器学习技法》的课程笔记。

  Aggregation models: mix or combine hypotheses for better performance, and it‘s a rich family.

  Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:

1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$

2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$

3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) with \alpha_t \gep 0$$

  NOTE: conclude select and mix uniformly.

4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) with q_t(x)\gep 0$$

  NOTE: conclude non-uniformly

时间: 2024-10-24 11:04:35

Aggregation Models的相关文章

机器学习技法课之Aggregation模型

Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记,用于学习之后的一些总结. 首先,对于Aggregation模型,其基本思想就是使用不同的 g t 来合成最后的预测模型 G t . 对于合成的方式主要有四种: 方法 数学描述 1. 选择.选择最值得可信的 g t 来当做最终的模型,而这个 gt 可以使用validation set 来进行选择 $$G(x)

coursera机器学习技法笔记(9-11)——decision tree &amp; Random forest &amp; GBDT

9 Decision Tree 9.1 Decision Tree Hypothesis 本节主要讲述了决策树的两种解释,一种是决策树是由叶子节点和路径组成的,当选择叶子节点对应的路径时采用对应的叶子节点结果:另一种观点是由分叉的树递归组成,当选择某一分支时将采用分支对应的子树的演算法结果. 决策树的优点在于可解释性强,高效.缺点是理论保证不足,并且算法多样. 9.2 Decision Tree Algoithm 决策树主要有4个关键部分: (1)分支分成几支? (2)该怎么分支? (3)什么时

林轩田《机器学习基石》 简介

转:https://blog.csdn.net/red_stone1/article/details/80517672 课程介绍 台湾大学林轩田老师曾在coursera上开设了两门机器学习经典课程:<机器学习基石>和<机器学习技法>.<机器学习基石>课程由浅入深.内容全面,基本涵盖了机器学习领域的很多方面.其作为机器学习的入门和进阶资料非常适合.<机器学习技法>课程主要介绍了机器学习领域经典的一些算法,包括支持向量机.决策树.随机森林.神经网络等等.林老师的

The Three Models of ASP.NET MVC Apps

12 June 2012  by Dino Esposito by Dino Esposito We've inherited from the original MVC pattern a rather simplistic idea of what should be in the Model. In fact, in ASP.NET MVC, there are three distinct types of model: the domain model, view model and

How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC

Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to-Pass-Multiple-Models Introduction In this article, we will discuss how to choose the most suitable way to pass multiple models from controller to vie

Django Aggregation数据库聚合查询

在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djngo聚合就能满足这些要求. 以下面的Model为例 from django.db import models class Author(models.Model): name = models.CharField(max_length=100) age = models.IntegerField() class Publisher(model

django 操作数据库--orm(object relation mapping)---models

思想 django为使用一种新的方式,即:关系对象映射(Object Relational Mapping,简称ORM). PHP:activerecord Java:Hibernate C#:Entity Framework django中遵循 Code Frist 的原则,即:根据代码中定义的类来自动生成数据库表. 创建数据库,设计表结构和字段 使用 MySQLdb 来连接数据库,并编写数据访问层代码 业务逻辑层去调用数据访问层执行数据库操作 三层架构 创建表 1.创建Model,之后可以根

django models Making queries

这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextField() def __unicode__(self): return self.name class Author(models.Model): name = models.CharField(max_length=50) email = models.EmailField() def __unic

Click Models for Web Search(2) - Parameter Estimation

在Click Model中进行参数预估的方法有两种:最大似然(MLE)和期望最大(EM).至于每个click model使用哪种参数预估的方法取决于此model中的随机变量的特性.如果model中的随机变量都是可以observed,那么无疑使用MLE,而如果model中含有某些hidden variables,则应该使用EM算法. 1. THE MLE ALGORITHM 似然函数为: 则需要预估的参数的在似然函数最大时候的值为: 1)MLE FOR THE RCM AND CTR MODELS