从10幅图像中采样出10000幅小图像块,每个小图像块大小是8*8,利用采样出的图像作为样本学习,利用LBFGS进行优化.
下面是对10幅图像白化之后的结果:
train.m
%% CS294A/CS294W Programming Assignment Starter Code % Instructions % ------------ % % This file contains code that helps you get started on the % programming assignment. You will need to complete the code in sampleIMAGES.m, % sparseAutoencoderCost.m and computeNumericalGradient.m. % For the purpose of completing the assignment, you do not need to % change the code in this file. % %%====================================================================== %% STEP 0: Here we provide the relevant parameters values that will % allow your sparse autoencoder to get good filters; you do not need to % change the parameters below. clear all;clc; visibleSize = 8*8; % number of input units hiddenSize = 25; % number of hidden units sparsityParam = 0.01; % desired average activation of the hidden units. % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p", % in the lecture notes). lambda = 0.0001; % weight decay parameter beta = 3; % weight of sparsity penalty term %%====================================================================== %% STEP 1: Implement sampleIMAGES % % After implementing sampleIMAGES, the display_network command should % display a random sample of 200 patches from the dataset patches = sampleIMAGES; display_network(patches(:,randi(size(patches,2),200,1)),8); % Obtain random parameters theta theta = initializeParameters(hiddenSize, visibleSize); %%====================================================================== %% STEP 2: Implement sparseAutoencoderCost % % You can implement all of the components (squared error cost, weight decay term, % sparsity penalty) in the cost function at once, but it may be easier to do % it step-by-step and run gradient checking (see STEP 3) after each step. We % suggest implementing the sparseAutoencoderCost function using the following steps: % % (a) Implement forward propagation in your neural network, and implement the % squared error term of the cost function. Implement backpropagation to % compute the derivatives. Then (using lambda=beta=0), run Gradient Checking % to verify that the calculations corresponding to the squared error cost % term are correct. % % (b) Add in the weight decay term (in both the cost function and the derivative % calculations), then re-run Gradient Checking to verify correctness. % % (c) Add in the sparsity penalty term, then re-run Gradient Checking to % verify correctness. % % Feel free to change the training settings when debugging your % code. (For example, reducing the training set size or % number of hidden units may make your code run faster; and setting beta % and/or lambda to zero may be helpful for debugging.) However, in your % final submission of the visualized weights, please use parameters we % gave in Step 0 above. [cost, grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, lambda, ... sparsityParam, beta, patches); %%====================================================================== %% STEP 3: Gradient Checking % % Hint: If you are debugging your code, performing gradient checking on smaller models % and smaller training sets (e.g., using only 10 training examples and 1-2 hidden % units) may speed things up. % First, lets make sure your numerical gradient computation is correct for a % simple function. After you have implemented computeNumericalGradient.m, % run the following: checkNumericalGradient(); % Now we can use it to check your cost function and derivative calculations % for the sparse autoencoder. numgrad = computeNumericalGradient( @(x) sparseAutoencoderCost(x, visibleSize, ... hiddenSize, lambda,sparsityParam,... beta,patches), theta); % Use this to visually compare the gradients side by side disp([numgrad grad]); % Compare numerically computed gradients with the ones obtained from backpropagation diff = norm(numgrad-grad)/norm(numgrad+grad); disp(diff); % Should be small. In our implementation, these values are % usually less than 1e-9. % When you got this working, Congratulations!!! %%====================================================================== %% STEP 4: After verifying that your implementation of % sparseAutoencoderCost is correct, You can start training your sparse % autoencoder with minFunc (L-BFGS). % Randomly initialize the parameters theta = initializeParameters(hiddenSize, visibleSize); % Use minFunc to minimize the function addpath minFunc/ options.Method = ‘lbfgs‘; % Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % sparseAutoencoderCost.m satisfies this. options.maxIter = 400; % Maximum number of iterations of L-BFGS to run options.display = ‘on‘; [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ... visibleSize, hiddenSize, ... lambda, sparsityParam, ... beta, patches), ... theta, options); %%====================================================================== %% STEP 5: Visualization W1 = reshape(opttheta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); display_network(W1‘, 12); print -djpeg weights.jpg % save the visualization to a file
sampleIMAGES.m,进行图像采集
function patches = sampleIMAGES() % sampleIMAGES % Returns 10000 patches for training load IMAGES; % load images from disk % figure; % imagesc(IMAGES(:,:,6)); % colormap gray; patchsize = 8; % we‘ll use 8x8 patches numpatches = 10000; % Initialize patches with zeros. Your code will fill in this matrix--one % column per patch, 10000 columns. patches = zeros(patchsize*patchsize, numpatches); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Fill in the variable called "patches" using data % from IMAGES. % % IMAGES is a 3D array containing 10 images % For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image, % and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize % it. (The contrast on these images look a bit off because they have % been preprocessed using using "whitening." See the lecture notes for % more details.) As a second example, IMAGES(21:30,21:30,1) is an image % patch corresponding to the pixels in the block (21,21) to (30,30) of % Image 1 [m,n] = size(IMAGES(:,:,1)); for i = 1:10 image = IMAGES(:, :, i); for j = 1:1000 row_id = randi([1 (m - patchsize + 1)]); column_id = randi([1 (n - patchsize + 1)]); patches(:,(i-1)*1000+j) = reshape(image(row_id:(row_id+patchsize-1), column_id:(column_id+patchsize-1)),... patchsize*patchsize, 1); end end %% --------------------------------------------------------------- % For the autoencoder to work well we need to normalize the data % Specifically, since the output of the network is bounded between [0,1] % (due to the sigmoid activation function), we have to make sure % the range of pixel values is also bounded between [0,1] patches = normalizeData(patches); end %% --------------------------------------------------------------- function patches = normalizeData(patches) % Squash data to [0.1, 0.9] since we use sigmoid as the activation % function in the output layer % Remove DC (mean of images). patches = bsxfun(@minus, patches, mean(patches)); % Truncate to +/-3 standard deviations and scale to -1 to 1 pstd = 3 * std(patches(:)); patches = max(min(patches, pstd), -pstd) / pstd; % Rescale from [-1,1] to [0.1,0.9] patches = (patches + 1) * 0.4 + 0.1; end
function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ... lambda, sparsityParam, beta, data) % visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % lambda: weight decay parameter % sparsityParam: The desired average activation for the hidden units (denoted in the lecture % notes by the greek alphabet rho, which looks like a lower-case "p"). % beta: weight of sparsity penalty term % data: Our 64x10000 matrix containing the training data. So, data(:,i) is the i-th training example. % The input theta is a vector (because minFunc expects the parameters to be a vector). % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize); b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end); % Cost and gradient variables (your code needs to compute these values). % Here, we initialize them to zeros. cost = 0; W1grad = zeros(size(W1)); W2grad = zeros(size(W2)); b1grad = zeros(size(b1)); b2grad = zeros(size(b2)); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder, % and the corresponding gradients W1grad, W2grad, b1grad, b2grad. % % W1grad, W2grad, b1grad and b2grad should be computed using backpropagation. % Note that W1grad has the same dimensions as W1, b1grad has the same dimensions % as b1, etc. Your code should set W1grad to be the partial derivative of J_sparse(W,b) with % respect to W1. I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) % with respect to the input parameter W1(i,j). Thus, W1grad should be equal to the term % [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 % of the lecture notes (and similarly for W2grad, b1grad, b2grad). % % Stated differently, if we were using batch gradient descent to optimize the parameters, % the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. % Jcost = 0; % 预测误差项 Jweight = 0; % 权重衰减项 Jsparse = 0; % 稀疏惩罚项 [n,m] = size(data); %m是样本个数,n是样本特征数 %前向传播计算神经网络每个神经元的激活值 Z2 = W1 * data + repmat(b1, 1, m); %b1扩展成1行m列,因为对每个样本的每个隐单元的激活值都要加上偏置项 a2 = sigmoid(Z2); Z3 = W2 * a2 + repmat(b2, 1, m); a3 = sigmoid(Z3); %计算预测产生的误差项 Jcost = (0.5 / m) * sum(sum((a3 - data).^2)); %计算权重衰减项 Jweight = 0.5 * (sum(sum(W1.^2)) + sum(sum(W2.^2))); %计算稀疏惩罚项 rho = (1 / m) .* sum(a2, 2); Jsparse = sum(sparsityParam .* log(sparsityParam ./ rho) + ... (1- sparsityParam) .* log((1- sparsityParam) ./ (1 - rho))); %代价函数 cost = Jcost + lambda * Jweight + beta * Jsparse; %反向传播求出每个节点的误差 d3 = -(data - a3) .* (sigmoid(Z3) .* (1 - sigmoid(Z3)));%注意sigmoid函数的求导f(1-f) sparseterm = beta * (-sparsityParam ./ rho + ... (1- sparsityParam) ./ (1 - rho)); %稀疏项导数 d2 = (W2‘ * d3 + repmat(sparseterm,1,m)).*(sigmoid(Z2) .* (1 - sigmoid(Z2))); %计算W1grad W1grad = W1grad + d2 * data‘; W1grad = (1/m) * W1grad + lambda * W1; %计算W2grad W2grad = W2grad+d3*a2‘; W2grad = (1/m) * W2grad + lambda * W2; %计算b1grad b1grad = b1grad+sum(d2,2); b1grad = (1/m)*b1grad;%注意b的偏导是一个向量,所以这里应该把每一行的值累加起来 %计算b2grad b2grad = b2grad+sum(d3,2); b2grad = (1/m)*b2grad; %------------------------------------------------------------------- % After computing the cost and gradient, we will convert the gradients back % to a vector format (suitable for minFunc). Specifically, we will unroll % your gradient matrices into a vector. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end %------------------------------------------------------------------- % Here‘s an implementation of the sigmoid function, which you may find useful % in your computation of the costs and the gradients. This inputs a (row or % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end
function numgrad = computeNumericalGradient(J, theta) % numgrad = computeNumericalGradient(J, theta) % theta: a vector of parameters % J: a function that outputs a real-number. Calling y = J(theta) will return the % function value at theta. % Initialize numgrad with zeros numgrad = zeros(size(theta)); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: % Implement numerical gradient checking, and return the result in numgrad. % (See Section 2.3 of the lecture notes.) % You should write code so that numgrad(i) is (the numerical approximation to) the % partial derivative of J with respect to the i-th input argument, evaluated at theta. % I.e., numgrad(i) should be the (approximately) the partial derivative of J with % respect to theta(i). % % Hint: You will probably want to compute the elements of numgrad one at a time. epsilon = 1e-4; n = size(theta,1); E = eye(n); for i = 1:n delta = E(:,i)*epsilon; numgrad(i) = (J(theta+delta)-J(theta-delta))/(epsilon*2.0); end %% --------------------------------------------------------------- end
function [] = checkNumericalGradient() % This code can be used to check your numerical gradient implementation % in computeNumericalGradient.m % It analytically evaluates the gradient of a very simple function called % simpleQuadraticFunction (see below) and compares the result with your numerical % solution. Your numerical gradient implementation is incorrect if % your numerical solution deviates too much from the analytical solution. % Evaluate the function and gradient at x = [4; 10]; (Here, x is a 2d vector.) x = [4; 10]; [value, grad] = simpleQuadraticFunction(x); % Use your code to numerically compute the gradient of simpleQuadraticFunction at x. % (The notation "@simpleQuadraticFunction" denotes a pointer to a function.) numgrad = computeNumericalGradient(@simpleQuadraticFunction, x); % Visually examine the two gradient computations. The two columns % you get should be very similar. disp([numgrad grad]); fprintf(‘The above two columns you get should be very similar.\n(Left-Your Numerical Gradient, Right-Analytical Gradient)\n\n‘); % Evaluate the norm of the difference between two solutions. % If you have a correct implementation, and assuming you used EPSILON = 0.0001 % in computeNumericalGradient.m, then diff below should be 2.1452e-12 diff = norm(numgrad-grad)/norm(numgrad+grad); disp(diff); fprintf(‘Norm of the difference between numerical and analytical gradient (should be < 1e-9)\n\n‘); end function [value,grad] = simpleQuadraticFunction(x) % this function accepts a 2D vector as input. % Its outputs are: % value: h(x1, x2) = x1^2 + 3*x1*x2 % grad: A 2x1 vector that gives the partial derivatives of h with respect to x1 and x2 % Note that when we pass @simpleQuadraticFunction(x) to computeNumericalGradients, we‘re assuming % that computeNumericalGradients will use only the first returned value of this function. value = x(1)^2 + 3*x(1)*x(2); grad = zeros(2, 1); grad(1) = 2*x(1) + 3*x(2); grad(2) = 3*x(1); end
function [h, array] = display_network(A, opt_normalize, opt_graycolor, cols, opt_colmajor) % This function visualizes filters in matrix A. Each column of A is a % filter. We will reshape each column into a square image and visualizes % on each cell of the visualization panel. % All other parameters are optional, usually you do not need to worry % about it. % opt_normalize: whether we need to normalize the filter so that all of % them can have similar contrast. Default value is true. % opt_graycolor: whether we use gray as the heat map. Default is true. % cols: how many columns are there in the display. Default value is the % squareroot of the number of columns in A. % opt_colmajor: you can switch convention to row major for A. In that % case, each row of A is a filter. Default value is false. warning off all if ~exist(‘opt_normalize‘, ‘var‘) || isempty(opt_normalize) opt_normalize= true; end if ~exist(‘opt_graycolor‘, ‘var‘) || isempty(opt_graycolor) opt_graycolor= true; end if ~exist(‘opt_colmajor‘, ‘var‘) || isempty(opt_colmajor) opt_colmajor = false; end % rescale A = A - mean(A(:)); if opt_graycolor, colormap(gray); end % compute rows, cols [L M]=size(A); sz=sqrt(L); buf=1; if ~exist(‘cols‘, ‘var‘) if floor(sqrt(M))^2 ~= M n=ceil(sqrt(M)); while mod(M, n)~=0 && n<1.2*sqrt(M), n=n+1; end m=ceil(M/n); else n=sqrt(M); m=n; end else n = cols; m = ceil(M/n); end array=-ones(buf+m*(sz+buf),buf+n*(sz+buf)); if ~opt_graycolor array = 0.1.* array; end if ~opt_colmajor k=1; for i=1:m for j=1:n if k>M, continue; end clim=max(abs(A(:,k))); if opt_normalize array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim; else array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/max(abs(A(:))); end k=k+1; end end else k=1; for j=1:n for i=1:m if k>M, continue; end clim=max(abs(A(:,k))); if opt_normalize array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz)/clim; else array(buf+(i-1)*(sz+buf)+(1:sz),buf+(j-1)*(sz+buf)+(1:sz))=reshape(A(:,k),sz,sz); end k=k+1; end end end if opt_graycolor h=imagesc(array,‘EraseMode‘,‘none‘,[-1 1]); else h=imagesc(array,‘EraseMode‘,‘none‘,[-1 1]); end axis image off drawnow; warning on all
进行梯度检验,两种不同的方式计算出的梯度相差 7.2299e-11,远小于1e-9.
随机展示出所有采样图像中的200幅:
本程序主要耗时间的地方是梯度检验,大约4-5分钟.
最终学习出的权重可视化结果如下:
时间: 2024-10-21 18:48:21