Language: Default Coins
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony‘s coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins. Input The input contains several test cases. The first line of each test case contains two integers n(1<=n<=100),m(m<=100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1<=Ai<=100000,1<=Ci<=1000). The last test case is followed by Output For each test case output the answer on a single line. Sample Input 3 10 1 2 4 2 1 1 2 5 1 4 2 1 0 0 Sample Output 8 4 Source |
题意:给n张不同面值的钱,每种面值的钱都有一定数量,问用这些钱能够凑出多少种不同的面值,并且面值要在1~m内。输出种数。
思路:dp[i]表示i面值的钱是否能够凑出来(0或1)。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #pragma comment (linker,"/STACK:102400000,102400000") #define maxn 100005 #define MAXN 2005 #define mod 1000000009 #define INF 0x3f3f3f3f #define pi acos(-1.0) #define eps 1e-6 #define lson rt<<1,l,mid #define rson rt<<1|1,mid+1,r #define FRE(i,a,b) for(i = a; i <= b; i++) #define FRL(i,a,b) for(i = a; i < b; i++) #define mem(t, v) memset ((t) , v, sizeof(t)) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define DBG pf("Hi\n") typedef long long ll; using namespace std; int n,m; int dp[maxn],num[maxn]; int v[111],c[111]; int main() { int i,j; while (sff(n,m)&&(n+m)) { mem(dp,0); FRL(i,0,n) sf(v[i]); //v[i]存的面值 FRL(i,0,n) sf(c[i]); //c[i]存的每个面值对应的数量 int ans=0; dp[0]=1; FRL(i,0,n) { mem(num,0); //num[j]表示凑够面值j时用了多少v[i]面值的钱 FRE(j,v[i],m) { if (!dp[j]&&dp[j-v[i]]&&num[j-v[i]]<c[i]) //j面值之前没有凑出来过并且j-v[i]面值的凑出来过,这样就可以增加一张v[i]凑成新面值 { ans++; dp[j]=1; num[j]=num[j-v[i]]+1; } } } pf("%d\n",ans); } return 0; }