题目传送:Codeforces Round #301 (Div. 2)
A. Combination Lock
水题,求最小移动次数,简单贪心一下即可
AC代码:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <vector> #include <map> #include <set> #include <deque> #include <cctype> #define LL long long #define INF 0x7fffffff using namespace std; int n; char s1[1005]; char s2[1005]; int main() { scanf("%d", &n); scanf("%s %s", s1, s2); int ans = 0; for(int i = 0; i < n; i ++) { if(s2[i] > s1[i]) { ans += min(s2[i] - s1[i], s1[i] + 10 - s2[i]); } else { ans += min(s1[i] - s2[i], s2[i] + 10 - s1[i]); } } printf("%d\n", ans); return 0; }
B. School Marks
也比较简单,就是有点繁琐,具体看代码吧
AC代码:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <vector> #include <map> #include <set> #include <deque> #include <cctype> #define LL long long #define INF 0x7fffffff using namespace std; int n, k, p, x, y; int a[1005]; int main() { scanf("%d %d %d %d %d", &n, &k, &p, &x, &y); int tot = 0;//记录当前的总和 int cnt = 0;//记录当前大于y的数目 for(int i = 0; i < k; i ++) { scanf("%d", &a[i]); tot += a[i]; if(a[i] >= y) { cnt ++; } } int mid = (n + 1) / 2; int xu;//记录最少所需要的数 if(k - cnt >= mid) {//当前如果有半数都比y小则输出-1 printf("-1\n"); return 0; } if(cnt < mid) {//比y大的少于mid的情况 xu = (mid - cnt) * y; xu += (n - k - (mid - cnt)); if(xu <= x - tot) { for(int i = 0; i < n - k - (mid - cnt); i ++) { printf("1 "); } for(int i = 0; i < mid - cnt; i ++) { printf("%d ", y); } } else { printf("-1\n"); } } else { //比y大的大于等于mid的情况 xu = n - k; if(xu <= x - tot) { for(int i = 0; i < n - k; i ++) { printf("1 "); } } else printf("-1\n"); } return 0; }
C. Ice Cave
题意:很简单,就是一个n*m的冰面,有的破碎了,走一次就会陷下去,有的完好的,不过走一次就破碎了,下次走就会陷下去,给你一个起点和终点,看起点能否走到终点那里陷下去,注意起点肯定是破碎的,且终点可能会和起点相同
思路:首先,特判一下起点和终点相同的情况,然后bfs一下看起点能否能走到终点,然后根据终点的情况分类,当终点为破碎的冰时,只要找到路径即YES,否则NO,当终点为完好的冰时,到了终点后还要走出去再回来,这里注意,只要当前挨着的冰有一块为‘.‘(即完好的),则成立,输出YES,否则输出NO;只需要预处理一下原来终点挨着的冰块的‘.‘的个数cnt即可(cnt>=2就YES,否则NO),然后这里需要特判一下起点和终点挨着的情况(因为此时只需要cnt>=1即可,这里尤其猥琐)
AC代码:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <vector> #include <map> #include <set> #include <deque> #include <cctype> #define LL long long #define INF 0x7fffffff using namespace std; struct node { int x, y; node(int x,int y) : x(x), y(y) {} }; int n, m; int mp[505][505]; int mx[4] = {-1, 0, 1, 0}; int my[4] = {0, 1, 0, -1}; int r1, c1; int r2, c2; char s[505]; int bfs() { //bfs找路径 queue<node> que; mp[r1][c1] --; que.push(node(r1, c1)); while(!que.empty()) { node tmp = que.front(); que.pop(); for(int i = 0; i < 4; i ++) { int xx = tmp.x + mx[i]; int yy = tmp.y + my[i]; if(xx >= 1 && xx <= n && yy <= m && yy >= 1) { if(xx == r2 && yy == c2) return 1; if(mp[xx][yy] == 2) { mp[xx][yy] --; que.push(node(xx, yy)); } } } } return 0; } int main() { scanf("%d %d", &n, &m); for(int i = 0; i < n; i ++) { scanf("%s", s); int len = strlen(s); for(int j = 0; j < len; j ++) { if(s[j] == '.') { mp[i + 1][j + 1] = 2; } else { mp[i + 1][j + 1] = 1; } } } scanf("%d %d %d %d", &r1, &c1, &r2, &c2); int cnt = 0;//记录终点旁边有几个'.' for(int i = 0; i < 4; i ++) { int xx = r2 + mx[i]; int yy = c2 + my[i]; if(mp[xx][yy] == 2) cnt ++; } if(r1 == r2 && c1 == c2) {//特判一下起点和终点相同的情况 if(cnt >= 1) { printf("YES\n"); } else printf("NO\n"); return 0; } int flag = 0;//特判一下起点和终点相邻的情况,这里特别坑,感觉坑了好多人 for(int i = 0; i < 4; i ++) { int xx = r1 + mx[i]; int yy = c1 + my[i]; if(xx == r2 && yy == c2) { flag = 1; break; } } if(flag) { if(mp[r2][c2] == 1) { printf("YES\n"); } else { if(cnt >= 1) { printf("YES\n"); } else printf("NO\n"); } return 0; } //起点和终点不相同且不相邻的情况 if(mp[r2][c2] == 1) { if(bfs()) { printf("YES\n"); } else printf("NO\n"); } else { if(bfs()) { if(cnt >= 2) { printf("YES\n"); } else printf("NO\n"); } else printf("NO\n"); } return 0; }
D. Bad Luck Island
思路:概率DP,设状态dp[i][j][k]为此时石头i个剪刀j个布k个的概率,可以知道dp[i][j][k]肯定由dp[i+1][j][k],dp[i][j+1][k],dp[i][j][k+1]得来,初始状态dp[r][s][p]为1,具体看代码
AC代码:
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <vector> #include <map> #include <set> #include <deque> #include <cctype> #define LL long long #define INF 0x7fffffff using namespace std; int r, s, p; double dp[105][105][105]; int main() { cin >> r >> s >> p; dp[r][s][p] = 1; for(int i = r; i >= 0; i --) { for(int j = s; j >= 0; j --) { for(int k = p; k >= 0; k --) { if(i == r && j == s && k == p) continue; double sum = i + j + k + 1; //上一状态的总数 if(sum <= 1) continue;//全为0的时候就不需要计算了 double t1 = 0, t2 = 0, t3 = 0; double t = 0; t1 = 2.0 * dp[i + 1][j][k] * (i + 1) / sum * k / (sum - 1); //当随机出现的是相同的人时的概率,这个概率不应该算到dp里面 t = (i+1)/sum*i/(sum-1) + j/sum*(j-1)/(sum-1) + k/sum*(k-1)/(sum-1); if(t < 1.0) t1 /= (1.0 - t);//通过比例消掉 t2 = 2.0 * dp[i][j + 1][k] * (j + 1) / sum * i / (sum - 1); t = i/sum*(i-1)/(sum-1) + (j+1)/sum*j/(sum-1) + k/sum*(k-1)/(sum-1); if(t < 1.0) t2 /= (1.0 - t); t3 = 2.0 * dp[i][j][k + 1] * (k + 1) / sum * j / (sum - 1); t = i/sum*(i-1)/(sum-1) + j/sum*(j-1)/(sum-1) + (k+1)/sum*k/(sum-1); if(t < 1.0) t3 /= (1.0 - t); dp[i][j][k] = t1 + t2 + t3;//统计上一状态到当前状态的概率 } } } double ansr = 0; double anss = 0; double ansp = 0; for(int i = 1; i <= r; i ++) { ansr += dp[i][0][0]; } for(int i = 1; i <= s; i ++) { anss += dp[0][i][0]; } for(int i = 1; i <= p; i ++) { ansp += dp[0][0][i]; } printf("%.12lf %.12lf %.12lf\n", ansr, anss, ansp); return 0; }
时间: 2024-12-14 17:15:57