《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现

============================================================================================

《机器学习实战》系列博客是博主阅读《机器学习实战》这本书的笔记,包括对当中算法的理解和算法的Python代码实现

另外博主这里有机器学习实战这本书的全部算法源码和算法所用到的源文件,有须要的留言

============================================================================================

附:之所以成为朴素贝叶斯是由于其如果了各个特征之间是独立的

关于朴素贝叶斯分类算法的理解请參考:http://blog.csdn.net/gamer_gyt/article/details/47205371

Python代码实现:

调用方式:

进入该文件所在文件夹。输入python。运行

>>>import bayes

>>>bayes.testingNB()

时间: 2024-10-12 05:13:58

《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现的相关文章

基于朴素贝叶斯分类器的文本分类算法

源代码下载:NaviveBayesClassify.rar Preface 文本的分类和聚类是一个比较有意思的话题,我以前也写过一篇blog<基于K-Means的文本聚类算法>,加上最近读了几本数据挖掘和机器学习的书籍,因此很想写点东西来记录下学习的所得. 在本文的上半部分<基于朴素贝叶斯分类器的文本分类算法(上)>一文中简单介绍了贝叶斯学习的基本理论,这一篇将展示如何将该理论运用到中文文本分类中来,具体的文本分类原理就不再介绍了,在上半部分有,也可以参见代码的注释. 文本特征向量

基于朴素贝叶斯分类算法的邮件过滤系统

转自穆晨 阅读目录 前言 准备数据:切分文本 训练并测试 小结 回到顶部 前言 朴素贝叶斯算法最为广泛而经典的应用毫无疑问是文档分类,更具体的情形是邮件过滤系统. 本文详细地讲解一个基于朴素贝叶斯分类算法的邮件过滤系统的具体实现. 本文侧重于工程实现,至于其中很多算法的细节请参考之前的一篇文章:朴素贝叶斯分类算法原理分析与代码实现. 回到顶部 准备数据:切分文本 获取到文本文件之后,首先要做的是两件事情: 1. 将文本文件转换为词汇列表 2. 将上一步的结果进一步转换为词向量 对于 1,具体来说

第六篇:基于朴素贝叶斯分类算法的邮件过滤系统

前言 朴素贝叶斯算法最为广泛而经典的应用毫无疑问是文档分类,更具体的情形是邮件过滤系统. 本文详细地讲解一个基于朴素贝叶斯分类算法的邮件过滤系统的具体实现. 本文侧重于工程实现,至于其中很多算法的细节请参考之前的一篇文章:朴素贝叶斯分类算法原理分析与代码实现. 准备数据:切分文本 获取到文本文件之后,首先要做的是两件事情: 1. 将文本文件转换为词汇列表 2. 将上一步的结果进一步转换为词向量 对于 1,具体来说,就是将文本文件以非字母或数字之外的字符为界进行切割. 仅仅使用字符串的 split

(数据挖掘-入门-8)基于朴素贝叶斯的文本分类器

主要内容: 1.动机 2.基于朴素贝叶斯的文本分类器 3.python实现 一.动机 之前介绍的朴素贝叶斯分类器所使用的都是结构化的数据集,即每行代表一个样本,每列代表一个特征属性. 但在实际中,尤其是网页中,爬虫所采集到的数据都是非结构化的,如新闻.微博.帖子等,如果要对对这一类数据进行分类,应该怎么办呢?例如,新闻分类,微博情感分析等. 本文就介绍一种基于朴素贝叶斯的文本分类器. 二.基于朴素贝叶斯的文本分类器 目标:对非结构化的文本进行分类 首先,回顾一下朴素贝叶斯公式: 特征.特征处理:

基于朴素贝叶斯分类器的文本分类

实验要求 题目要求 1.用MapReduce算法实现贝叶斯分类器的训练过程,并输出训练模型: 2.用输出的模型对测试集文档进行分类测试.测试过程可基于单机Java程序,也可以是MapReduce程序.输出每个测试文档的分类结果: 3.利用测试文档的真实类别,计算分类模型的Precision,Recall和F1值. 2.实验环境 实验平台:VMware Workstation10 虚拟机系统:Suse11 集群环境:主机名master  ip:192.168.226.129 从机名slave1 

基于KNN的newsgroup 18828文本分类器的Python实现

还是同前一篇作为学习入门. 1. KNN算法描述: step1: 文本向量化表示,计算特征词的TF-IDF值 step2: 新文本到达后,根据特征词确定文本的向量 step3 : 在训练文本集中选出与新文本向量最相近的k个文本向量,相似度度量采用“余弦相似度”,根据实验测试的结果调整k值,此次选择20 step4: 在新文本的k个邻居中,依次计算每类的权重, step5: 比较类的权重,将新文本放到权重最大的那个类中 2. 文档TF-IDF计算和向量化表示 # -*- coding: utf-8

朴素贝叶斯分类算法介绍及python代码实现案例

朴素贝叶斯分类算法 1.朴素贝叶斯分类算法原理 1.1.概述 贝叶斯分类算法是一大类分类算法的总称 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种 注:朴素的意思是条件概率独立性 P(A|x1x2x3x4)=p(A|x1)*p(A|x2)p(A|x3)p(A|x4)则为条件概率独立 P(xy|z)=p(xyz)/p(z)=p(xz)/p(z)*p(yz)/p(z) 1.2.算法思想 朴素贝叶斯的思想是这样的: 如果一个事物在一些属性条件发生

机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

摘要: 朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类.总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型:当各特征相关性较小时,朴素贝叶斯分类性能最为良好.另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算.本文详述了朴素贝叶斯分类的统计学

机器学习之基于朴素贝叶斯文本分类算法

原理 在分类(classification)问题中,常常需要把一个事物分到某个类别.一个事物具有很多属性,把它的众多属性看做一个向量,即x=(x1,x2,x3,-,xn),用x这个向量来代表这个事物.类别也是有很多种,用集合Y=y1,y2,-ym表示.如果x属于y1类别,就可以给x打上y1标签,意思是说x属于y1类别.这就是所谓的分类(Classification). x的集合记为X,称为属性集.一般X和Y的关系是不确定的,你只能在某种程度上说x有多大可能性属于类y1,比如说x有80%的可能性属