bzoj2212 [Poi2011]Tree Rotations 线段树合并

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch – the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves’ labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar’s tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar’s tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree’s description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree’s description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

题解

线段树的合并,子树的逆序对与父亲交换没有关系,所以贪心合并即可。

 1 #include<cstring>
 2 #include<cmath>
 3 #include<algorithm>
 4 #include<iostream>
 5 #include<cstdio>
 6
 7 #define N 400007
 8 #define M 4000007
 9 #define ll long long
10 using namespace std;
11 inline int read()
12 {
13     int x=0,f=1;char ch=getchar();
14     while(ch>‘9‘||ch<‘0‘){if (ch==‘-‘) f=-1;ch=getchar();}
15     while(ch<=‘9‘&&ch>=‘0‘){x=(x<<3)+(x<<1)+ch-‘0‘;ch=getchar();}
16     return x*f;
17 }
18
19 int n,sz,seg;
20 ll ans,cnt1,cnt2;
21 int val[N],l[N],r[N],rt[N];
22 int siz[M],ls[M],rs[M];
23
24 void readtree(int x)
25 {
26     val[x]=read();
27     if(!val[x])
28     {
29         l[x]=++sz;
30         readtree(l[x]);
31         r[x]=++sz;
32         readtree(r[x]);
33     }
34 }
35 void build(int &k,int l,int r,int val)
36 {
37     if(!k)k=++seg;
38     if(l==r){siz[k]=1;return;}
39     int mid=(l+r)>>1;
40     if(val<=mid)build(ls[k],l,mid,val);
41     else build(rs[k],mid+1,r,val);
42     siz[k]=siz[ls[k]]+siz[rs[k]];
43 }
44 int merge(int x,int y)
45 {
46     if(!x)return y;
47     if(!y)return x;
48     cnt1+=(ll)siz[rs[x]]*siz[ls[y]];
49     cnt2+=(ll)siz[ls[x]]*siz[rs[y]];
50     ls[x]=merge(ls[x],ls[y]);
51     rs[x]=merge(rs[x],rs[y]);
52     siz[x]=siz[ls[x]]+siz[rs[x]];
53     return x;
54 }
55 void solve(int x)
56 {
57     if(!x)return;
58     solve(l[x]);solve(r[x]);
59     if(!val[x])
60     {
61         cnt1=cnt2=0;
62         rt[x]=merge(rt[l[x]],rt[r[x]]);
63         ans+=min(cnt1,cnt2);
64     }
65 }
66 int main()
67 {
68     n=read();++sz;
69     readtree(1);
70     for(int i=1;i<=sz;i++)
71         if(val[i])build(rt[i],1,n,val[i]);
72     solve(1);
73     printf("%lld",ans);
74 }

原文地址:https://www.cnblogs.com/fengzhiyuan/p/8168131.html

时间: 2024-10-13 12:01:11

bzoj2212 [Poi2011]Tree Rotations 线段树合并的相关文章

BZOJ2212 [Poi2011]Tree Rotations 线段树合并 逆序对

原文链接http://www.cnblogs.com/zhouzhendong/p/8079786.html 题目传送门 - BZOJ3286 题意概括 给一棵n(1≤n≤200000个叶子的二叉树,可以交换每个点的左右子树,要求前序遍历叶子的逆序对最少. 题解 线段树合并. 博主很懒,题解不写了. 这份代码是仿照别人的写的. 代码 #include <cstring> #include <cstdio> #include <cmath> #include <al

[POI2011]ROT-Tree Rotations 线段树合并|主席树 / 逆序对

题目[POI2011]ROT-Tree Rotations [Description] 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有\(n\)个叶子节点,满足这些权值为\(1..n\)的一个排列).可以任意交换每个非叶子节点的左右孩子. 要求进行一系列交换,使得最终所有叶子节点的权值按照中序遍历写出来,逆序对个数最少. [Input Format] 第一行一个整数\(n\). 下面每行,一个数\(x\). 如果\(x =0\),表示这个节点非叶子节点,递归地向下读

BZOJ_2212_[Poi2011]Tree Rotations_线段树合并

Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch

bzoj2212 Tree Rotations 线段树合并+动态开点

题目传送门 思路: 区间合并线段树的题,第一次写,对于一颗子树,无论这个子树怎么交换,都不会对其他子树的逆序对造成影响,所以就直接算逆序对就好. 注意叶子节点是1到n的全排列,所以每个权值都只会出现1次,合并很好写. 注意动态开点,最多n个叶子节点,然后每次查询用到log个子树节点,(这句话似乎有语病)所以要开nlogn的空间. #include<bits/stdc++.h> #define clr(a,b) memset(a,b,sizeof(a)) #define fpn() freope

BZOJ2212: [Poi2011]Tree Rotations

2212: [Poi2011]Tree Rotations Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 391  Solved: 127[Submit][Status] Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists o

[BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换左右子树无关,是否交换左右子树取决于交换后 “跨越 x 左子树与右子树的逆序对” 是否会减小. 因此我们要求出两种情况下的逆序对数,使用线段树合并,对每个节点建一棵线段树,然后合并的同时就求出两种情况下的逆序对. 代码 #include <iostream> #include <cstdli

bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现代码: #include<bits/stdc++.h> using namespace std; #define ll long long const int M = 4e5+10; int n,cnt,idx; ll ans,cnt1,cnt2; int v[M],l[M],r[M],root[

线段树合并(【POI2011】ROT-Tree Rotations)

线段树合并([POI2011]ROT-Tree Rotations) 题意 现在有一棵二叉树,所有非叶子节点都有两个孩子.在每个叶子节点上有一个权值(有nn个叶子节点,满足这些权值为1-n1-n的一个排列).可以任意交换每个非叶子节点的左右孩子. 要求进行一系列交换,使得最终所有叶子节点的权值按照前序遍历序写出来,逆序对个数最少. 解法 我们对每一个叶子节点建立一颗权值线段树,然后,我们考虑将两个叶子节点上的线段树合并起来,然后我们考虑逆序对的个数. 如果我们将左儿子的线段树放在前面,则产生的逆

神奇的操作——线段树合并(例题: BZOJ2212)

什么是线段树合并? 首先你需要动态开点的线段树.(对每个节点维护左儿子.右儿子.存储的数据,然后要修改某儿子所在的区间中的数据的时候再创建该节点.) 考虑这样一个问题: 你现在有两棵权值线段树(大概是用来维护一个有很多数的可重集合那种线段树,若某节点对应区间是\([l, r]\),则它存储的数据是集合中\(\ge l\).\(\le r\)的数的个数),现在你想把它们俩合并,得到一棵新的线段树.你要怎么做呢? 提供这样一种算法(tree(x, y, z)表示一个左儿子是x.右儿子是y.数据是z的