通过hadoop + hive搭建离线式的分析系统之快速搭建一览

  最近有个需求,需要整合所有店铺的数据做一个离线式分析系统,曾经都是按照店铺分库分表来给各自商家通过highchart多维度展示自家的店铺经营

状况,我们知道这是一个以店铺为维度的切分,非常适合目前的在线业务,这回老板提需求了,曾经也是一位数据分析师,sql自然就溜溜的,所以就来了

一个以买家维度展示用户画像,从而更好的做数据推送和用户行为分析,因为是离线式分析,目前还没研究spark,impala,drill了。

一:搭建hadoop集群

      hadoop的搭建是一个比较繁琐的过程,采用3台Centos,废话不过多,一图胜千言。。。

二: 基础配置

1. 关闭防火墙

[[email protected] ~]# systemctl stop firewalld.service    #关闭防火墙
[[email protected] ~]# systemctl disable firewalld.service #禁止开机启动
[[email protected] ~]# firewall-cmd --state                #查看防火墙状态
not running
[[email protected] ~]# 

2. 配置SSH免登录

   不管在开启还是关闭hadoop的时候,hadoop内部都要通过ssh进行通讯,所以需要配置一个ssh公钥免登陆,做法就是将一个centos的公钥copy到另一

台centos的authorized_keys文件中。

<1>: 在196上生成公钥私钥 ,从下图中可以看到通过ssh-keygen之后会生成 id_rsa 和  id_rsa.pub 两个文件,这里我们

关心的是公钥id_rsa.pub。

[[email protected] ~]# ssh-keygen -t rsa -P ‘‘
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory ‘/root/.ssh‘.
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
40:72:cc:f4:c3:e7:15:c9:9f:ee:f8:48:ec:22:be:a1 [email protected]
The key‘s randomart image is:
+--[ RSA 2048]----+
|    .++    ...   |
|     +oo    o.   |
|      . + . .. . |
|       . + .  o  |
|        S .  .   |
|           .  .  |
|        .   oo   |
|       ....o...  |
|      E.oo .o..  |
+-----------------+
[[email protected] ~]# ls /root/.ssh/id_rsa
/root/.ssh/id_rsa
[[email protected] ~]# ls /root/.ssh
id_rsa  id_rsa.pub

<2> 通过scp复制命令 将公钥copy到 146 和 150主机。

[[email protected] ~]# scp /root/.ssh/id_rsa.pub [email protected]192.168.23.146:/root/.ssh/authorized_keys
[email protected]192.168.23.146‘s password:
id_rsa.pub                                                                100%  408     0.4KB/s   00:00
[[email protected] ~]# scp /root/.ssh/id_rsa.pub [email protected]192.168.23.150:/root/.ssh/authorized_keys
[email protected]192.168.23.150‘s password:
id_rsa.pub                                                                100%  408     0.4KB/s   00:00
[[email protected] ~]# 

<3> 做host映射,主要给几台机器做别名映射,方便管理。

[[email protected] ~]# cat /etc/hosts
127.0.0.1   localhost localhost.localdomain localhost4 localhost4.localdomain4
::1         localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.23.196 master
192.168.23.150 slave1
192.168.23.146 slave2
[[email protected] ~]# 

<4> java安装环境

hadoop是java写的,所以需要安装java环境,具体怎么安装,大家可以网上搜一下,先把centos自带的openjdk卸载掉,最后在profile中配置一下。

[[email protected] ~]# cat /etc/profile
# /etc/profile

# System wide environment and startup programs, for login setup
# Functions and aliases go in /etc/bashrc

# It‘s NOT a good idea to change this file unless you know what you
# are doing. It‘s much better to create a custom.sh shell script in
# /etc/profile.d/ to make custom changes to your environment, as this
# will prevent the need for merging in future updates.

pathmunge () {
    case ":${PATH}:" in
        *:"$1":*)
            ;;
        *)
            if [ "$2" = "after" ] ; then
                PATH=$PATH:$1
            else
                PATH=$1:$PATH
            fi
    esac
}

if [ -x /usr/bin/id ]; then
    if [ -z "$EUID" ]; then
        # ksh workaround
        EUID=`id -u`
        UID=`id -ru`
    fi
    USER="`id -un`"
    LOGNAME=$USER
    MAIL="/var/spool/mail/$USER"
fi

# Path manipulation
if [ "$EUID" = "0" ]; then
    pathmunge /usr/sbin
    pathmunge /usr/local/sbin
else
    pathmunge /usr/local/sbin after
    pathmunge /usr/sbin after
fi

HOSTNAME=`/usr/bin/hostname 2>/dev/null`
HISTSIZE=1000
if [ "$HISTCONTROL" = "ignorespace" ] ; then
    export HISTCONTROL=ignoreboth
else
    export HISTCONTROL=ignoredups
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

# By default, we want umask to get set. This sets it for login shell
# Current threshold for system reserved uid/gids is 200
# You could check uidgid reservation validity in
# /usr/share/doc/setup-*/uidgid file
if [ $UID -gt 199 ] && [ "`id -gn`" = "`id -un`" ]; then
    umask 002
else
    umask 022
fi

for i in /etc/profile.d/*.sh ; do
    if [ -r "$i" ]; then
        if [ "${-#*i}" != "$-" ]; then
            . "$i"
        else
            . "$i" >/dev/null
        fi
    fi
done

unset i
unset -f pathmunge

export JAVA_HOME=/usr/big/jdk1.8
export HADOOP_HOME=/usr/big/hadoop
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/bin:$PATH

[[email protected] ~]# 

二: hadoop安装包

1.  大家可以到官网上找一下安装链接:http://hadoop.apache.org/releases.html, 我这里选择的是最新版的2.9.0,binary安装。

2.  然后就是一路命令安装【看清楚目录哦。。。没有的话自己mkdir】

[[email protected] big]# pwd
/usr/big
[[email protected] big]# ls
hadoop-2.9.0  hadoop-2.9.0.tar.gz
[[email protected] big]# tar -xvzf hadoop-2.9.0.tar.gz

3. 对core-site.xml ,hdfs-site.xml,mapred-site.xml,yarn-site.xml,slaves,hadoop-env.sh的配置,路径都在etc目录下,

这也是最麻烦的。。。

[[email protected] hadoop]# pwd
/usr/big/hadoop/etc/hadoop
[[email protected] hadoop]# ls
capacity-scheduler.xml      hadoop-policy.xml        kms-log4j.properties        slaves
configuration.xsl           hdfs-site.xml            kms-site.xml                ssl-client.xml.example
container-executor.cfg      httpfs-env.sh            log4j.properties            ssl-server.xml.example
core-site.xml               httpfs-log4j.properties  mapred-env.cmd              yarn-env.cmd
hadoop-env.cmd              httpfs-signature.secret  mapred-env.sh               yarn-env.sh
hadoop-env.sh               httpfs-site.xml          mapred-queues.xml.template  yarn-site.xml
hadoop-metrics2.properties  kms-acls.xml             mapred-site.xml
hadoop-metrics.properties   kms-env.sh               mapred-site.xml.template
[[email protected] hadoop]# 

<1> core-site.xml 下的配置中,我指定了hadoop的基地址,namenode的端口号,namenode的地址。

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/usr/hadoop</value>
        <description>A base for other temporary directories.</description>
    </property>
      <!-- file system properties -->
    <property>
        <name>fs.default.name</name>
        <value>hdfs://192.168.23.196:9000</value>
    </property>
    <property>
        <name>dfs.name.dir</name>
        <value>/usr/hadoop/namenode</value>
        <description>A base for other temporary directories.</description>
    </property>
</configuration>

<2>  hdfs-site.xml  这个文件主要用来配置datanode的存放路径,以及datanode的副本。

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
        <property>
        <name>dfs.data.dir</name>
        <value>/usr/hadoop/datanode</value>
    </property>
</configuration>

3. 这里配置一下jobtrace端口号

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
    <property>
      <name>mapreduce.job.tracker</name>
      <value>hdfs://192.168.23.196:8001</value>
      <final>true</final>
    </property>
</configuration>

4. yarn-site.xml文件配置

<configuration>

<!-- Site specific YARN configuration properties -->

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>20480</value>
</property>
<property>
   <name>yarn.scheduler.minimum-allocation-mb</name>
   <value>2048</value>
</property>
<property>
    <name>yarn.nodemanager.vmem-pmem-ratio</name>
    <value>2.1</value>
</property>

</configuration>

5. 在etc的slaves文件中,追加我们在host中配置的salve1和slave2,这样启动的时候,hadoop才能知道slave的位置。

[[email protected] hadoop]# cat slaves
slave1
slave2
[[email protected] hadoop]# pwd
/usr/big/hadoop/etc/hadoop
[[email protected] hadoop]# 

6. 在hadoop-env.sh中配置java的路径,其实就是把 /etc/profile的配置copy一下,追加到文件末尾。

[[email protected] hadoop]# vim hadoop-env.sh
export JAVA_HOME=/usr/big/jdk1.8

不过这里还有一个坑,hadoop在计算时,默认的heap-size是512M,这就容易导致在大数据计算时,堆栈溢出,这里将512改成2048。

export HADOOP_NFS3_OPTS="$HADOOP_NFS3_OPTS"
export HADOOP_PORTMAP_OPTS="-Xmx2048m $HADOOP_PORTMAP_OPTS"

# The following applies to multiple commands (fs, dfs, fsck, distcp etc)
export HADOOP_CLIENT_OPTS="$HADOOP_CLIENT_OPTS"
# set heap args when HADOOP_HEAPSIZE is empty
if [ "$HADOOP_HEAPSIZE" = "" ]; then
  export HADOOP_CLIENT_OPTS="-Xmx2048m $HADOOP_CLIENT_OPTS"
fi

7.  不要忘了在/usr目录下创建文件夹哦,然后在/etc/profile中配置hadoop的路径。

/usr/hadoop
/usr/hadoop/namenode
/usr/hadoop/datanode

export JAVA_HOME=/usr/big/jdk1.8
export HADOOP_HOME=/usr/big/hadoop
export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/bin:$PATH

8.  将196上配置好的整个hadoop文件夹通过scp到 146 和150 服务器上的/usr/big目录下,后期大家也可以通过svn进行hadoop文件夹的

管理,这样比较方便。

scp -r /usr/big/hadoop [email protected]:/usr/big
scp -r /usr/big/hadoop [email protected]:/usr/big

三:启动hadoop

1.  启动之前通过hadoop namede -format 格式化一下hadoop dfs。

[[email protected] hadoop]# hadoop namenode -format
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

17/11/24 20:13:19 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG:   host = master/192.168.23.196
STARTUP_MSG:   args = [-format]
STARTUP_MSG:   version = 2.9.0

2.  在master机器上start-all.sh 启动hadoop集群。

[[email protected] hadoop]# start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [master]
[email protected]‘s password:
master: starting namenode, logging to /usr/big/hadoop/logs/hadoop-root-namenode-master.out
slave1: starting datanode, logging to /usr/big/hadoop/logs/hadoop-root-datanode-slave1.out
slave2: starting datanode, logging to /usr/big/hadoop/logs/hadoop-root-datanode-slave2.out
Starting secondary namenodes [0.0.0.0]
[email protected]‘s password:
0.0.0.0: starting secondarynamenode, logging to /usr/big/hadoop/logs/hadoop-root-secondarynamenode-master.out
starting yarn daemons
starting resourcemanager, logging to /usr/big/hadoop/logs/yarn-root-resourcemanager-master.out
slave1: starting nodemanager, logging to /usr/big/hadoop/logs/yarn-root-nodemanager-slave1.out
slave2: starting nodemanager, logging to /usr/big/hadoop/logs/yarn-root-nodemanager-slave2.out
[[email protected] hadoop]# jps
8851 NameNode
9395 ResourceManager
9655 Jps
9146 SecondaryNameNode
[[email protected] hadoop]# 

通过jps可以看到,在master中已经开启了NameNode 和 ResouceManager,那么接下来,大家也可以到slave1和slave2机器上看一下是不是把NodeManager

和 DataNode都开起来了。。。

[[email protected] hadoop]# jps
7112 NodeManager
7354 Jps
6892 DataNode
[[email protected] hadoop]#
[[email protected] hadoop]# jps
7553 NodeManager
7803 Jps
7340 DataNode
[[email protected] hadoop]# 

四:搭建完成,查看结果

通过下面的tlnp命令,可以看到50070端口和8088端口打开,一个是查看datanode,一个是查看mapreduce任务。

[[email protected] hadoop]# netstat -tlnp

五:最后通过hadoop自带的wordcount来结束本篇的搭建过程。

在hadoop的share目录下有一个wordcount的测试程序,主要用来统计单词的个数,hadoop/share/hadoop/mapreduce/hadoop-mapreduce-

examples-2.9.0.jar。

1. 我在/usr/soft下通过程序生成了一个39M的2.txt文件(全是随机汉字哦。。。)

[[email protected] soft]# ls -lsh 2.txt
39M -rw-r--r--. 1 root root 39M Nov 24 00:32 2.txt
[[email protected] soft]# 

2. 在hadoop中创建一个input文件夹,然后在把2.txt上传过去

[[email protected] soft]# hadoop fs -mkdir /input
[[email protected] soft]# hadoop fs -put /usr/soft/2.txt  /input
[[email protected] soft]# hadoop fs -ls /
Found 1 items
drwxr-xr-x   - root supergroup          0 2017-11-24 20:30 /input

3. 执行wordcount的mapreduce任务

[[email protected] soft]# hadoop jar /usr/big/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.0.jar wordcount /input/2.txt /output/v1
17/11/24 20:32:21 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
17/11/24 20:32:21 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
17/11/24 20:32:21 INFO input.FileInputFormat: Total input files to process : 1
17/11/24 20:32:21 INFO mapreduce.JobSubmitter: number of splits:1
17/11/24 20:32:21 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1430356259_0001
17/11/24 20:32:22 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
17/11/24 20:32:22 INFO mapreduce.Job: Running job: job_local1430356259_0001
17/11/24 20:32:22 INFO mapred.LocalJobRunner: OutputCommitter set in config null
17/11/24 20:32:22 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
17/11/24 20:32:22 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
17/11/24 20:32:22 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
17/11/24 20:32:22 INFO mapred.LocalJobRunner: Waiting for map tasks
17/11/24 20:32:22 INFO mapred.LocalJobRunner: Starting task: attempt_local1430356259_0001_m_000000_0
17/11/24 20:32:22 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
17/11/24 20:32:22 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
17/11/24 20:32:22 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
17/11/24 20:32:22 INFO mapred.MapTask: Processing split: hdfs://192.168.23.196:9000/input/2.txt:0+40000002
17/11/24 20:32:22 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
17/11/24 20:32:22 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
17/11/24 20:32:22 INFO mapred.MapTask: soft limit at 83886080
17/11/24 20:32:22 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
17/11/24 20:32:22 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
17/11/24 20:32:22 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
17/11/24 20:32:23 INFO mapreduce.Job: Job job_local1430356259_0001 running in uber mode : false
17/11/24 20:32:23 INFO mapreduce.Job:  map 0% reduce 0%
17/11/24 20:32:23 INFO input.LineRecordReader: Found UTF-8 BOM and skipped it
17/11/24 20:32:27 INFO mapred.MapTask: Spilling map output
17/11/24 20:32:27 INFO mapred.MapTask: bufstart = 0; bufend = 27962024; bufvoid = 104857600
17/11/24 20:32:27 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 12233388(48933552); length = 13981009/6553600
17/11/24 20:32:27 INFO mapred.MapTask: (EQUATOR) 38447780 kvi 9611940(38447760)
17/11/24 20:32:32 INFO mapred.MapTask: Finished spill 0
17/11/24 20:32:32 INFO mapred.MapTask: (RESET) equator 38447780 kv 9611940(38447760) kvi 6990512(27962048)
17/11/24 20:32:33 INFO mapred.MapTask: Spilling map output
17/11/24 20:32:33 INFO mapred.MapTask: bufstart = 38447780; bufend = 66409804; bufvoid = 104857600
17/11/24 20:32:33 INFO mapred.MapTask: kvstart = 9611940(38447760); kvend = 21845332(87381328); length = 13981009/6553600
17/11/24 20:32:33 INFO mapred.MapTask: (EQUATOR) 76895558 kvi 19223884(76895536)
17/11/24 20:32:34 INFO mapred.LocalJobRunner: map > map
17/11/24 20:32:34 INFO mapreduce.Job:  map 67% reduce 0%
17/11/24 20:32:38 INFO mapred.MapTask: Finished spill 1
17/11/24 20:32:38 INFO mapred.MapTask: (RESET) equator 76895558 kv 19223884(76895536) kvi 16602456(66409824)
17/11/24 20:32:39 INFO mapred.LocalJobRunner: map > map
17/11/24 20:32:39 INFO mapred.MapTask: Starting flush of map output
17/11/24 20:32:39 INFO mapred.MapTask: Spilling map output
17/11/24 20:32:39 INFO mapred.MapTask: bufstart = 76895558; bufend = 100971510; bufvoid = 104857600
17/11/24 20:32:39 INFO mapred.MapTask: kvstart = 19223884(76895536); kvend = 7185912(28743648); length = 12037973/6553600
17/11/24 20:32:40 INFO mapred.LocalJobRunner: map > sort
17/11/24 20:32:43 INFO mapred.MapTask: Finished spill 2
17/11/24 20:32:43 INFO mapred.Merger: Merging 3 sorted segments
17/11/24 20:32:43 INFO mapred.Merger: Down to the last merge-pass, with 3 segments left of total size: 180000 bytes
17/11/24 20:32:43 INFO mapred.Task: Task:attempt_local1430356259_0001_m_000000_0 is done. And is in the process of committing
17/11/24 20:32:43 INFO mapred.LocalJobRunner: map > sort
17/11/24 20:32:43 INFO mapred.Task: Task ‘attempt_local1430356259_0001_m_000000_0‘ done.
17/11/24 20:32:43 INFO mapred.LocalJobRunner: Finishing task: attempt_local1430356259_0001_m_000000_0
17/11/24 20:32:43 INFO mapred.LocalJobRunner: map task executor complete.
17/11/24 20:32:43 INFO mapred.LocalJobRunner: Waiting for reduce tasks
17/11/24 20:32:43 INFO mapred.LocalJobRunner: Starting task: attempt_local1430356259_0001_r_000000_0
17/11/24 20:32:43 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1
17/11/24 20:32:43 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: false
17/11/24 20:32:43 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [ ]
17/11/24 20:32:43 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: [email protected]
17/11/24 20:32:43 INFO mapreduce.Job:  map 100% reduce 0%
17/11/24 20:32:43 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=1336252800, maxSingleShuffleLimit=334063200, mergeThreshold=881926912, ioSortFactor=10, memToMemMergeOutputsThreshold=10
17/11/24 20:32:43 INFO reduce.EventFetcher: attempt_local1430356259_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
17/11/24 20:32:43 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1430356259_0001_m_000000_0 decomp: 60002 len: 60006 to MEMORY
17/11/24 20:32:43 INFO reduce.InMemoryMapOutput: Read 60002 bytes from map-output for attempt_local1430356259_0001_m_000000_0
17/11/24 20:32:43 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 60002, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->60002
17/11/24 20:32:43 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
17/11/24 20:32:43 INFO mapred.LocalJobRunner: 1 / 1 copied.
17/11/24 20:32:43 INFO reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
17/11/24 20:32:43 INFO mapred.Merger: Merging 1 sorted segments
17/11/24 20:32:43 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 59996 bytes
17/11/24 20:32:43 INFO reduce.MergeManagerImpl: Merged 1 segments, 60002 bytes to disk to satisfy reduce memory limit
17/11/24 20:32:43 INFO reduce.MergeManagerImpl: Merging 1 files, 60006 bytes from disk
17/11/24 20:32:43 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
17/11/24 20:32:43 INFO mapred.Merger: Merging 1 sorted segments
17/11/24 20:32:43 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 59996 bytes
17/11/24 20:32:43 INFO mapred.LocalJobRunner: 1 / 1 copied.
17/11/24 20:32:43 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
17/11/24 20:32:44 INFO mapred.Task: Task:attempt_local1430356259_0001_r_000000_0 is done. And is in the process of committing
17/11/24 20:32:44 INFO mapred.LocalJobRunner: 1 / 1 copied.
17/11/24 20:32:44 INFO mapred.Task: Task attempt_local1430356259_0001_r_000000_0 is allowed to commit now
17/11/24 20:32:44 INFO output.FileOutputCommitter: Saved output of task ‘attempt_local1430356259_0001_r_000000_0‘ to hdfs://192.168.23.196:9000/output/v1/_temporary/0/task_local1430356259_0001_r_000000
17/11/24 20:32:44 INFO mapred.LocalJobRunner: reduce > reduce
17/11/24 20:32:44 INFO mapred.Task: Task ‘attempt_local1430356259_0001_r_000000_0‘ done.
17/11/24 20:32:44 INFO mapred.LocalJobRunner: Finishing task: attempt_local1430356259_0001_r_000000_0
17/11/24 20:32:44 INFO mapred.LocalJobRunner: reduce task executor complete.
17/11/24 20:32:44 INFO mapreduce.Job:  map 100% reduce 100%
17/11/24 20:32:44 INFO mapreduce.Job: Job job_local1430356259_0001 completed successfully
17/11/24 20:32:44 INFO mapreduce.Job: Counters: 35
    File System Counters
        FILE: Number of bytes read=1087044
        FILE: Number of bytes written=2084932
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=80000004
        HDFS: Number of bytes written=54000
        HDFS: Number of read operations=13
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=4
    Map-Reduce Framework
        Map input records=1
        Map output records=10000000
        Map output bytes=80000000
        Map output materialized bytes=60006
        Input split bytes=103
        Combine input records=10018000
        Combine output records=24000
        Reduce input groups=6000
        Reduce shuffle bytes=60006
        Reduce input records=6000
        Reduce output records=6000
        Spilled Records=30000
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=1770
        Total committed heap usage (bytes)=1776287744
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters
        Bytes Read=40000002
    File Output Format Counters
        Bytes Written=54000

4. 最后我们到/output/v1下面去看一下最终生成的结果,由于生成的汉字太多,我这里只输出了一部分

[[email protected] soft]# hadoop fs -ls /output/v1
Found 2 items
-rw-r--r--   2 root supergroup          0 2017-11-24 20:32 /output/v1/_SUCCESS
-rw-r--r--   2 root supergroup      54000 2017-11-24 20:32 /output/v1/part-r-00000
[[email protected] soft]# hadoop fs -ls /output/v1/part-r-00000
-rw-r--r--   2 root supergroup      54000 2017-11-24 20:32 /output/v1/part-r-00000
[[email protected] soft]# hadoop fs -tail /output/v1/part-r-00000
    1609
攟    1685
攠    1636
攡    1682
攢    1657
攣    1685
攤    1611
攥    1724
攦    1732
攧    1657
攨    1767
攩    1768
攪    1624

好了,搭建的过程确实是麻烦,关于hive的搭建,我们放到后面的博文中去说吧。。。希望本篇对你有帮助。

时间: 2024-10-13 15:56:50

通过hadoop + hive搭建离线式的分析系统之快速搭建一览的相关文章

开源日志分析系统ELK平台搭建部署

开源日志分析系统ELK平台搭建部署 一.前言 日志主要包括系统日志.应用程序日志和安全日志.系统运维和开发人员可以通过日志了解服务器软硬件信息.检查配置过程中的错误及错误发生的原因.经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误. 通常,日志被分散的储存不同的设备上.如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志.这样是不是感觉很繁琐和效率低下.当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总. 集中化管理

手把手搭建企业IT实战环境第三季:快速搭建SCCM1902服务器

手把手搭建企业IT实战环境第三季:快速搭建SCCM1902服务器 ?Lander Zhang 专注外企按需IT基础架构运维服务,IT Helpdesk 实战培训践行者博客:https://blog.51cto.com/lander IT Helpdesk实战培训视频课程:https://edu.51cto.com/lecturer/733218.html2019/6/19 课程介绍 这是一门手把手指导你快速搭建SCCM1902服务器的视频教程,为你学习SCCM服务器的应用操作,客户端系统部署或在

Flume+Hadoop+Hive的离线分析系统基本架构

PS:历史原因作者账号名为:ymh198816,但事实上作者的生日并不是1988年1月6日 最近在学习大数据的离线分析技术,所以在这里通过做一个简单的网站点击流数据分析离线系统来和大家一起梳理一下离线分析系统的架构模型.当然这个架构模型只能是离线分析技术的一个简单的入门级架构,实际生产环境中的大数据离线分析技术还涉及到很多细节的处理和高可用的架构.这篇文章的目的只是带大家入个门,让大家对离线分析技术有一个简单的认识,并和大家一起做学习交流. 离线分析系统的结构图 整个离线分析的总体架构就是使用F

在linux中快速使用docker搭建ELK日志监控分析系统

在linux中使用docker安装ELK日志监控分析系统 网上的教程非常零散或者很多都已经过时了,我这里总结了相比于其他更新的日志系统搭建.并且使用docker镜像,更加简化了安装.在这开始之前先附上我的成功配置截图: linux的安装 linux的安装很简单,但是要使用docker必须安装centos7及以上,不然出现的各种兼容性问题自行百度解决.这里有两种方法: 如果是学生可以购买阿里或者腾讯的linux服务器,简单方便,每个月只要10元钱,其实挺划算的.这是阿里linux的购买地址:htt

DeepEyes: 用于深度神经网络设计的递进式可视分析系统 (DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks)

深度神经网络,在模式识别问题上,取得非常不错的效果.但设计一个性能好的神经网络,需要反复尝试,是个非常耗时的过程.这个工作[1]实现了用于深度神经网络设计的可视分析系统,DeepEyes.该系统可以在DNNs训练过程中,提取数据,从网络整体效果,神经层和神经元角度,分析神经网络运行状态,进而协助用户更新DNNs. DeepEyes系统主要关注以下5种任务: 识别稳定层.在DNNs训练过程中,用户可以选择稳定的神经层,进行细节分析. 识别退化的神经元.当某个神经元对所有样本的反应都一样时,认为该神

docker:搭建ELK 开源日志分析系统

ELK 是由三部分组成的一套日志分析系统, Elasticsearch: 基于json分析搜索引擎,Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发现,索引自动分片, 索引副本机制,restful风格接口,多数据源,自动搜索负载等. Logstash:动态数据收集管道,Logstash是一个完全开源的工具,它可以对你的日志进行收集.分析,并将其存储供以后使用 Kibana:可视化视图,将elasticsearh所收集的data通过视图展现.kibana 是一个

CentOS7.3下ELK日志分析系统集群搭建

Elasticsearch是个基于Lucene实现的开源.分布式.restful的全文本搜索引擎,此外他还是一个分布式实时文档存储,其中每个文档的每个filed均是可被索引的数据,且可被搜索,也是一个带实时分析功能的搜索引擎,能够扩展至数以百计的节点实时处理PB级别的数据.它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等.Elasticsearch集群采用主从模式,通过获取Logstash客户端收集来的日志信息同步到Elastic

Hadoop Hive sql语法详解

Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把己写的mapper 和reducer 作为插件来支持

Hadoop Hive基础sql语法

Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.而mapreduce开发人员可以把己写的mapper 和reducer 作为插件来支持