洛谷 P1176 路径计数2

P1176 路径计数2

题目描述

一个N×N的网格,你一开始在(1, 1),即左上角。每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法。

但是这个问题太简单了,所以现在有M个格子上有障碍,即不能走到这M个格子上。

输入输出格式

输入格式:

输入文件第1行包含两个非负整数N,M,表示了网格的边长与障碍数。

接下来M行,每行两个不大于N的正整数x, y。表示坐标(x, y)上有障碍不能通过,且有1≤x, y≤n,且x, y至少有一个大于1,并请注意障碍坐标有可能相同。

输出格式:

输出文件仅包含一个非负整数,为答案mod 100003后的结果。

输入输出样例

输入样例#1: 复制

3 1
3 1

输出样例#1: 复制

5

说明

对于20%的数据,有N≤3;

对于40%的数据,有N≤100;

对于40%的数据,有M=0;

对于100%的数据,有N≤1000,M≤100000。

思路:简单的棋盘dp。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 100003
using namespace std;
int n,m;
int map[1010][1010];
int ans[1010][1010];
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        map[x][y]=1;
    }
    ans[1][1]=1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(!map[i][j]){
                if(i==1&&j==1)    continue;
                if(i>1&&j>1&&!map[i-1][j]&&!map[i][j-1])    ans[i][j]=(ans[i][j]+ans[i-1][j]+ans[i][j-1])%mod;
                else if((i<=1||map[i-1][j])&&j>1&&!map[i][j-1])    ans[i][j]=(ans[i][j]+ans[i][j-1])%mod;
                else if((j<=1||map[i][j-1])&&i>1&&!map[i-1][j])    ans[i][j]=(ans[i][j]+ans[i-1][j])%mod;
            }
    cout<<ans[n][n];
}
时间: 2024-11-05 12:24:20

洛谷 P1176 路径计数2的相关文章

洛谷——P1608 路径统计

P1608 路径统计 题目描述 “RP餐厅”的员工素质就是不一般,在齐刷刷的算出同一个电话号码之后,就准备让HZH,TZY去送快餐了,他们将自己居住的城市画了一张地图,已知在他们的地图上,有N个地方,而且他们目前处在标注为“1”的小镇上,而送餐的地点在标注为“N”的小镇.(有点废话)除此之外还知道这些道路都是单向的,从小镇I到J需要花费D[I,J]的时间,为了更高效快捷的将快餐送到顾客手中, 他们想走一条从小镇1到小镇N花费最少的一条路,但是他们临出发前,撞到因为在路上堵车而生气的FYY,深受启

洛谷 P1608 路径统计

题目描述 “RP餐厅”的员工素质就是不一般,在齐刷刷的算出同一个电话号码之后,就准备让HZH,TZY去送快餐了,他们将自己居住的城市画了一张地图,已知在他们的地图上,有N个地方,而且他们目前处在标注为“1”的小镇上,而送餐的地点在标注为“N”的小镇.(有点废话)除此之外还知道这些道路都是单向的,从小镇I到J需要花费D[I,J]的时间,为了更高效快捷的将快餐送到顾客手中, 他们想走一条从小镇1到小镇N花费最少的一条路,但是他们临出发前,撞到因为在路上堵车而生气的FYY,深受启发,不能仅知道一条路线

洛谷 P2807 三角形计数

P2807 三角形计数 题目背景 三角形计数(triangle) 递推 题目描述 把大三角形的每条边n等分,将对应的等分点连接起来(连接线分别平行于三条边),这样一共会有多少三角形呢?编程来解决这个问题. 输入输出格式 输入格式: 第一行为整数t(≤100),表示测试数据组数:接下来t行,每行一个正整数n(≤500). 输出格式: 对于每个n,输出一个正整数,表示三角形个数. 输入输出样例 输入样例#1: 复制 3 1 2 3 输出样例#1: 复制 1 5 13 说明 n(≤500) t(≤10

洛谷——P3914 染色计数

P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,?,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,?,M编号.每个节点可以染MM种颜色中的若干种,求不同染色方案的数量除以(10^9 + 7109+7)的余数. 输入输出格式 输入格式: 第1 行,2 个整数N,MN,M. 接下来NN行,第ii行表示节点ii可以染的颜色.第1个整数k_iki?,表示可以染的颜色数量.接下来k_iki?个整数,表示可以染的颜色

洛谷 1608 路径统计

[题解] 最短路计数的模板题吧..要把重边判掉.. 1 #include<cstdio> 2 #include<algorithm> 3 #define N 2010 4 #define rg register 5 using namespace std; 6 int n,m,tot=0,dis[N],pos[N],last[N],cnt[N],rec[N][N][11]; 7 struct edge{ 8 int to,pre,dis; 9 }e[N*N]; 10 struct

洛谷P2518 [HAOI2010]计数

题目:https://www.luogu.org/problemnew/show/P2518 题目描述 你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数.比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等. 现在给定一个数,问在这个数之前有多少个数.(注意这个数不会有前导0). 输入输出格式 输入格式: 只有1行,为1个整数n. 输出格式: 只有整数,表示N之前出现的数的个数. 输入输出样例 输入样例#1:

洛谷P1144 最短路计数(SPFA)

To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边. 输出格式: 输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可.如果无法到达顶点i则输

洛谷 P2764 LibreOJ 6002 最小路径覆盖问题

题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0.G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G 的最小路径覆盖.提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下: 每条边的容量均为1.求网络G1的( 0 x , 0 y )最大流. «编程任务:

洛谷 1144 最短路计数 bfs

洛谷1144 最短路计数 传送门 其实这道题目的正解应该是spfa里面加一些处理,,然而,,然而,,既然它是无权图,,那么就直接bfs了,用一个cnt记录一下每一个点的方案数,分几种情况讨论一下转移,最后输出cnt即为结果.. 题目中所说的重边和自环啥的没看出来有啥影响.. 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 5 const int maxn = 100000 + 500;