[LeetCode] Count Different Palindromic Subsequences 计数不同的回文子序列的个数

Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7.

A subsequence of a string S is obtained by deleting 0 or more characters from S.

A sequence is palindromic if it is equal to the sequence reversed.

Two sequences A_1, A_2, ... and B_1, B_2, ... are different if there is some i for which A_i != B_i.

Example 1:

Input:
S = ‘bccb‘
Output: 6
Explanation:
The 6 different non-empty palindromic subsequences are ‘b‘, ‘c‘, ‘bb‘, ‘cc‘, ‘bcb‘, ‘bccb‘.
Note that ‘bcb‘ is counted only once, even though it occurs twice.

Example 2:

Input:
S = ‘abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba‘
Output: 104860361
Explanation:
There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.

Note:

  • The length of S will be in the range [1, 1000].
  • Each character S[i] will be in the set {‘a‘, ‘b‘, ‘c‘, ‘d‘}.

这道题给了给了我们一个字符串,让我们求出所有的非空回文子序列的个数,虽然这题限制了字符只有四种,但是我们还是按一般的情况来解吧,可以有26个字母。然后说最终结果要对一个很大的数字取余,这就暗示了结果会是一个很大的值,那么对于这种问题一般都是用DP或者是带记忆数组memo的递归来解,二者的本质其实是一样的。我们先来看带记忆数组memo的递归解法,这种解法的思路是一层一层剥洋葱,比如"bccb",按照字母来剥,先剥字母b,确定最外层"b _ _ b",这会产生两个回文子序列"b"和"bb",然后递归进中间的部分,把中间的回文子序列个数算出来加到结果res中,然后开始剥字母c,找到最外层"cc",此时会产生两个回文子序列"c"和"cc",然后由于中间没有字符串了,所以递归返回0,按照这种方法就可以算出所有的回文子序列了。

我们建立一个二维数组chars,外层长度为26,里面放一个空数组。这是为了统计每个字母在原字符串中出现的位置,然后定义一个二维记忆数组memo,其中memo[i][j]表示第i个字符到第j个字符之间的子字符串中的回文子序列的个数,初始化均为0。然后我们遍历字符串S,将每个字符的位置加入其对应的数组中,比如对于"bccb",那么有:

b -> {0, 3}

c -> {1, 2}

然后在[0, n]的范围内调用递归函数,在递归函数中,首先判断如果start大于等于end,返回0。如果当前位置在memo的值大于0,说明当前情况已经计算过了,直接返回memo数组中的值。否则进行所有字母的遍历,如果某个字母对应的数组中没有值,说明该字母不曾在字符串中出现,跳过。然后我们在字母数组中查找第一个不小于start的位置,查找第一个小于end的位置,当前循环中,start为0,end为4,当前处理字母b,我们的new_start指向0,new_end指向3,如果当前new_start指向了end(),或者其指向的位置大于end,说明当前范围内没有字母b,直接跳过,否则结果res自增1,因为此时new_start存在,至少有个单个的字母b,也可以当作回文子序列,然后看new_start和new_end如果不相同,说明两者各指向了不同的b,此时res应自增1,因为又增加了一个新的回文子序列"bb",下面就是对中间部分调用递归函数了,把返回值加到结果res中。此时字母b就处理完了,现在处理字母c,此时的start还是0,end还是4,new_start指向1,new_end指向2,跟上面的分析相同,new_start在范围内,结果自增1,因为加上了"c",然后new_start和new_end不同,结果res再自增1,因为加上了"cc",其中间没有字符了,调用递归的结果是0,for循环结果,我们将memo[start][end]的值对超大数取余,将该值返回即可,参见代码如下:

解法一:

class Solution {
public:
    int countPalindromicSubsequences(string S) {
        int n = S.size();
        vector<vector<int>> chars(26, vector<int>());
        vector<vector<int>> memo(n + 1, vector<int>(n + 1, 0));
        for (int i = 0; i < n; ++i) {
            chars[S[i] - ‘a‘].push_back(i);
        }
        return helper(S, chars, 0, n, memo);
    }
    int helper(string S, vector<vector<int>>& chars, int start, int end, vector<vector<int>>& memo) {
        if (start >= end) return 0;
        if (memo[start][end] > 0) return memo[start][end];
        long res = 0;
        for (int i = 0; i < 26; ++i) {
            if (chars[i].empty()) continue;
            auto new_start = lower_bound(chars[i].begin(), chars[i].end(), start);
            auto new_end = lower_bound(chars[i].begin(), chars[i].end(), end) - 1;
            if (new_start == chars[i].end() || *new_start >= end) continue;
            ++res;
            if (new_start != new_end) ++res;
            res += helper(S, chars, *new_start + 1, *new_end, memo);
        }
        memo[start][end] = res % int(1e9 + 7);
        return memo[start][end];
    }
};

我们再来看一种迭代的写法,使用一个二维的dp数组,其中dp[i][j]表示子字符串[i, j]中的不同回文子序列的个数,我们初始化dp[i][i]为1,因为任意一个单个字符就是一个回文子序列,其余均为0。这里的更新顺序不是正向,也不是逆向,而是斜着更新,对于"bccb"的例子,其最终dp数组如下,我们可以看到其更新顺序分别是红-绿-蓝-橙。

  b c c bb 1 2 3 6
c 0 1 2 3
c 0 0 1 2
b 0 0 0 1

这样更新的好处是,更新当前位置时,其左,下,和左下位置的dp值均已存在,而当前位置的dp值需要用到这三个位置的dp值。我们观察上面的dp数组,可以发现当S[i]不等于S[j]的时候,dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1],即当前的dp值等于左边值加下边值减去左下值,因为算左边值的时候包括了左下的所有情况,而算下边值的时候也包括了左下值的所有情况,那么左下值就多算了一遍,所以要减去。而当S[i]等于S[j]的时候,情况就比较复杂了,需要分情况讨论,因为我们不知道中间还有几个和S[i]相等的值。举个简单的例子,比如"aba"和"aaa",当i = 0, j = 2的时候,两个字符串均有S[i] == S[j],此时二者都新增两个子序列"a"和"aa",但是"aba"中间的"b"就可以加到结果res中,而"aaa"中的"a"就不能加了,因为和外层的单独"a"重复了。我们的目标就要找到中间重复的"a"。所以我们让left = i + 1, right = j - 1,然后对left进行while循环,如果left <= right, 且S[left] != S[i]的时候,left向右移动一个;同理,对right进行while循环,如果left <= right, 且S[right] != S[i]的时候,left向左移动一个。这样最终left和right值就有三种情况:

1. 当left > righ时,说明中间没有和S[i]相同的字母了,就是"aba"这种情况,那么就有dp[i][j] = dp[i + 1][j - 1] * 2 + 2,其中dp[i + 1][j - 1]是中间部分的回文子序列个数,为啥要乘2呢,因为中间的所有子序列可以单独存在,也可以再外面包裹上字母a,所以是成对出现的,要乘2。加2的原因是外层的"a"和"aa"也要统计上。

2. 当left = right时,说明中间只有一个和S[i]相同的字母,就是"aaa"这种情况,那么有dp[i][j] = dp[i + 1][j - 1] * 2 + 1,其中乘2的部分跟上面的原因相同,加1的原因是单个字母"a"的情况已经在中间部分算过了,外层就只能再加上个"aa"了。

3. 当left < right时,说明中间至少有两个和S[i]相同的字母,就是"aabaa"这种情况,那么有dp[i][j] = dp[i + 1][j - 1] * 2 - dp[left + 1][right - 1],其中乘2的部分跟上面的原因相同,要减去left和right中间部分的子序列个数的原因是其被计算了两遍,要将多余的减掉。

参见代码如下:

解法二:

class Solution {
public:
    int countPalindromicSubsequences(string S) {
        int n = S.size(), M = 1e9 + 7;
        vector<vector<int>> dp(n, vector<int>(n, 0));
        for (int i = 0; i < n; ++i) dp[i][i] = 1;
        for (int len = 1; len < n; ++len) {
            for (int i = 0; i < n - len; ++i) {
                int j = i + len;
                if (S[i] == S[j]) {
                    int left = i + 1, right = j - 1;
                    while (left <= right && S[left] != S[i]) ++left;
                    while (left <= right && S[right] != S[i]) --right;
                    if (left > right) {
                        dp[i][j] = dp[i + 1][j - 1] * 2 + 2;
                    } else if (left == right) {
                        dp[i][j] = dp[i + 1][j - 1] * 2 + 1;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1] * 2 - dp[left + 1][right - 1];
                    }
                } else {
                    dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1];
                }
                dp[i][j] = (dp[i][j] < 0) ? dp[i][j] + M : dp[i][j] % M;
            }
        }
        return dp[0][n - 1];
    }
};

讨论:这道题确实是一道很难的题,和它类似的题目还有几道,虽然那些题有的还有非DP解法,但是DP解法始终是核心的,也是我们最应该掌握的方法。首先我们要分清子串和子序列的题,个人感觉子序列要更难一些。在之前那道Longest Palindromic Subsequence中要我们求最长的回文子序列,我们需要逆向遍历dp数组,当s[i]和s[j]相同时,长度为中间部分的dp值加2,否则就是左边值和下边值中的较大值,因为是子序列,不匹配就可以忽略当前字符。而对于回文子串的问题,比如Longest Palindromic SubstringPalindromic Substrings,一个是求最长的回文子串,一个是求所有的回文子串个数,他们的dp定义是看子串[i, j]是否是回文串,求最长回文子串就是维护一个最大值,不停用当前回文子串的长度更新这个最大值,同时更新最大值的左右边界。而求所有回文子串的个数就是如果当前dp[i][j]判断是回文串,计数器就自增1。而判断当前dp[i][j]是否是回文串的核心就是s[i]==s[j],且i,j中间没有字符了,或者中间的dp值为true。

类似题目:

Longest Palindromic Subsequence

Longest Palindromic Substring

Palindromic Substrings

参考资料:

https://discuss.leetcode.com/topic/111230/accepted-java-solution-using-memoization

https://discuss.leetcode.com/topic/111483/java-96ms-dp-solution-with-detailed-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

时间: 2024-10-12 12:11:53

[LeetCode] Count Different Palindromic Subsequences 计数不同的回文子序列的个数的相关文章

LeetCode:5_Longest Palindromic Substring | 最长的回文子串 | Medium

题目: Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 解题思路:1.简单思路:暴力破解法,时间复杂度O(n^3),肯定通不过. 2.动态规划法:(一般含“最XX”等优化词义的题意味着都可以动态规划

LN : leetcode 730 Count Different Palindromic Subsequences

lc 730 Count Different Palindromic Subsequences 730 Count Different Palindromic Subsequences Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7. A subsequence of a string S i

hdu-4632 Palindrome subsequence (回文子序列计数)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4632 问题要求回答一串字符串中回文子序列的数量,例如acbca就有 a,c,b,c,a,cc,aa,aca,aca(注意这两个aca的c是不同位置的c,都要累计),aba,cbc,acca,acbca.共13种. 我们如果构造dp[i][j]为区间从i-j的回文子序列个数,当i==j时dp[i][j]=1,当i!=j时,如果字符串i,j位相等,他们便可以从dp[i+1,j-1]转移而来,即dp[i]

516 Longest Palindromic Subsequence 最长回文子序列

给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subsequence/description/ C++: class Solution { public: int longestPalindromeSubseq(string s) { int n = s.size(); vector<vector<int>> dp(n, vector<in

LightOJ - 1205:Palindromic Numbers (数位DP&amp;回文串)

A palindromic number or numeral palindrome is a 'symmetrical' number like 16461 that remains the same when its digits are reversed. In this problem you will be given two integers i j, you have to find the number of palindromic numbers between i and j

LeetCode 673. Number of Longest Increasing Subsequence 最长递增子序列的个数 (C++/Java)

题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7]. Example 2: Input: [2,2,2,2,2] O

[LeetCode] Count Numbers with Unique Digits 计算各位不相同的数字个数

Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Example: Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99]) Hint: A direct

LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2

https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhorizen/article/details/6629268 class Solution { public: string longestPalindrome(string s) { char ch[2001];int p[2001]; ch[2*s.size()] = 0; for(int i =

LeetCode 5 Longest Palindromic Substring 最长回文子序列 manacher算法 string.substr 难度:2

https://leetcode.com/problems/longest-palindromic-substring/ manacher算法:http://blog.csdn.net/ywhorizen/article/details/6629268 string longestPalindrome(string s) { char ch[2001];int p[2001]; ch[2*s.size()] = 0; for(int i = 0; i < 2 * s.size(); i++) {