R-kmeans聚类算法

  

  在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。

问题

K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法(Wikipedia链接

K-Means要解决的问题

算法概要

这个算法其实很简单,如下图所示:

从上图中,我们可以看到,A,B,C,D,E是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。

然后,K-Means的算法如下:

  1. 随机在图中取K(这里K=2)个种子点。
  2. 然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(上图中,我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点)
  3. 接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步)
  4. 然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。

这个算法很简单,但是有些细节我要提一下,求距离的公式我不说了,大家有初中毕业水平的人都应该知道怎么算的。我重点想说一下“求点群中心的算法”。

求点群中心的算法

一般来说,求点群中心点的算法你可以很简的使用各个点的X/Y坐标的平均值。不过,我这里想告诉大家另三个求中心点的的公式:

1)Minkowski Distance公式——λ可以随意取值,可以是负数,也可以是正数,或是无穷大。

2)Euclidean Distance公式——也就是第一个公式λ=2的情况

3)CityBlock Distance公式——也就是第一个公式λ=1的情况

这三个公式的求中心点有一些不一样的地方,我们看下图(对于第一个λ在0-1之间)。

(1)Minkowski Distance     (2)Euclidean Distance    (3) CityBlock Distance

上面这几个图的大意是他们是怎么个逼近中心的,第一个图以星形的方式,第二个图以同心圆的方式,第三个图以菱形的方式。

K-Means的演示

如果你以”K Means Demo“为关键字到Google里查你可以查到很多演示。这里推荐一个演示:http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

操作是,鼠标左键是初始化点,右键初始化“种子点”,然后勾选“Show History”可以看到一步一步的迭代。

注:这个演示的链接也有一个不错的K Means Tutorial

K-Means++算法

K-Means主要有两个最重大的缺陷——都和初始值有关:

  • K是事先给定的,这个K值的选定是非常难以估计的。很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。(ISODATA算法通过类的自动合并和分裂,得到较为合理的类型数目K)
  • K-Means算法需要用初始随机种子点来搞,这个随机种子点太重要,不同的随机种子点会有得到完全不同的结果。(K-Means++算法可以用来解决这个问题,其可以有效地选择初始点)

我在这里重点说一下K-Means++算法步骤:

  1. 先从我们的数据库随机挑个随机点当“种子点”。
  2. 对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
  3. 然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
  4. 重复第(2)和第(3)步直到所有的K个种子点都被选出来。
  5. 进行K-Means算法。

相关的代码你可以在这里找到“implement the K-means++ algorithm”(墙)另,Apache的通用数据学库也实现了这一算法

K-Means算法应用

看到这里,你会说,K-Means算法看来很简单,而且好像就是在玩坐标点,没什么真实用处。而且,这个算法缺陷很多,还不如人工呢。是的,前面的例子只是玩二维坐标点,的确没什么意思。但是你想一下下面的几个问题:

1)如果不是二维的,是多维的,如5维的,那么,就只能用计算机来计算了。

2)二维坐标点的X,Y 坐标,其实是一种向量,是一种数学抽象。现实世界中很多属性是可以抽象成向量的,比如,我们的年龄,我们的喜好,我们的商品,等等,能抽象成向量的目的就是可以让计算机知道某两个属性间的距离。如:我们认为,18岁的人离24岁的人的距离要比离12岁的距离要近,鞋子这个商品离衣服这个商品的距离要比电脑要近,等等。

只要能把现实世界的物体的属性抽象成向量,就可以用K-Means算法来归类了

在《k均值聚类(K-means)》 这篇文章中举了一个很不错的应用例子,作者用亚洲15支足球队的2005年到1010年的战绩做了一个向量表,然后用K-Means把球队归类,得出了下面的结果,呵呵。

  • 亚洲一流:日本,韩国,伊朗,沙特
  • 亚洲二流:乌兹别克斯坦,巴林,朝鲜
  • 亚洲三流:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼

其实,这样的业务例子还有很多,比如,分析一个公司的客户分类,这样可以对不同的客户使用不同的商业策略,或是电子商务中分析商品相似度,归类商品,从而可以使用一些不同的销售策略,等等。

最后给一个挺好的算法的幻灯片:http://www.cs.cmu.edu/~guestrin/Class/10701-S07/Slides/clustering.pdf

时间: 2024-10-09 16:40:41

R-kmeans聚类算法的相关文章

Spark MLlib KMeans聚类算法

1.1 KMeans聚类算法 1.1.1 基础理论 KMeans算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把待分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇心的移动距离小于某个给定的值. K-Means聚类算法主要分为三个步骤: (1)第一步是为待聚类的点寻找聚类中心: (2)第二步是计算每个点到聚类中心的距离,将每个点聚类到离该点最近的聚类中去: (3)第三步是计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心: 反复执行(

k-means聚类算法python实现

K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比

03-01 K-Means聚类算法

目录 K-Means聚类算法 一.K-Means聚类算法学习目标 二.K-Means聚类算法详解 2.1 K-Means聚类算法原理 2.2 K-Means聚类算法和KNN 三.传统的K-Means聚类算法流程 3.1 输入 3.2 输出 3.3 流程 四.K-Means初始化优化之K-Means++ 五.K-Means距离计算优化之elkan K-Means 六.大数据优化之Mini Batch K-Means 七.K-Means聚类算法优缺点 7.1 优点 7.2 缺点 八.小结 更新.更全

Kmeans聚类算法原理与实现

Kmeans聚类算法 1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果. 假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取: (2)在每次迭代中,对任意一个样本,分别求其到k个中心的欧式距离,将该样本归到距离最短的中心所在的类: (3)利用

K-Means 聚类算法

K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Cluster Analysis)方法.聚类就是将数据对象分组成为多个类或者簇 (Cluster),使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大. 划分(Partitioning):聚类可以基于划分,也可以基于分层.划分即将对象划分成不同的簇,而分层是将对象分等级. 排他(Exclu

视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析(2)

聚类概念: 聚类:简单地说就是把相似的东西分到一组.同 Classification (分类)不同,分类应属于监督学习.而在聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,因此,一个聚类算法通常只需要知道如何计算相似 度就可以开始工作了.聚类不需要使用训练数据进行学习,应属于无监督学习. 我们经常接触到的聚类分析,一般都是数值聚类,一种常见的做法是同时提取 N 种特征,将它们放在一起组成一个 N 维向量,从而得到一个从原始数据集合到 N 维向量空间的映射,然后基

视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析(1)

在目前实际的视觉SLAM中,闭环检测多采用DBOW2模型https://github.com/dorian3d/DBoW2,而bag of words 又运用了数据挖掘的K-means聚类算法,笔者只通过bag of words 模型用在图像处理中进行形象讲解,并没有涉及太多对SLAM的闭环检测的应用. 1.Bag-of-words模型简介 Bag-of-words模型是信息检索领域常用的文档表示方法.在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法.句法等要素,将其仅仅看作是若

沙湖王 | 用Scipy实现K-means聚类算法

沙湖王 | 用Scipy实现K-means聚类算法 用Scipy实现K-means聚类算法沙湖王 | 用Scipy实现K-means聚类算法,布布扣,bubuko.com

Tensorflow快速入门1--实现K-Means聚类算法

快速入门1–实现K-Means聚类算法 环境: 虚拟机 版本:0.12.0(仅使用cpu下,pip命令安装) 目录 1.环境搭建 的安装 1.2简单测试 学习文档 相关的库Seaborn.pandas安装 实现K-Means聚类算法 2.1最基本的K-Means聚类算法步骤 实现K-Means聚类算法 2.3测试数据准备 2.4完整的kmeans.py文件 2.5简单测试结果 1.环境搭建 的安装 这里通过pip安装(只安装cpu单机版的,有条件的可以安装gpu下的). 1 2 1 2 注意:如

scikit-learn学习之K-means聚类算法与 Mini Batch K-Means算法

====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ====================================================================== K-means算法分析与Python代码实现请参考之前的两篇博客: <机器学习实战>k