? Acwing 178 && POJ 2449 ?

写在前面

学习算法的日子又到了~~

Idea?

提供以下几种方法

  • 暴搜

  • 输出-1(是的,输出-1)
  • 有算法的暴力
    • \(Dijkstra\)

      • \(Dijkstra\)的本质是贪心,复杂度为\(O(n^2)\),堆优化后为\(O((m+n) \log (m+n))\)
    • \(SPFA\)
      • 学长说最好不要用,因为它死了
  • \(A^\ast\)
    • \(y\)总有视频讲解,不懂的同学可以去看看,这里我就不再赘述了

下面直接进行\(A^\ast\)的讲解

所以,发现想出\(f\)很关键,,\(f\)要尽量大但不超过最优解

第几次出队就是第几短,于是终点出了\(k\)次就是第\(k\)短路了

按照\(Dijkstra\)的思想,我们每次取出\(d[x]+f[x]\) 最小的

然后更新所有能到达的点

发现\(f[x]\) 可以取到终点的距离,这样尽量大且一定比现在的解小

于是先倒着\(Dijkstra\)一遍(搞出\(f\))

然后\(A^ \ast\),直到终点第\(k\)次。

\(OK\),上代码

Code?

Code1

//Dijstra 暴力版
const int maxx=1001;
struct Node{
    int v,to,next;
}e[maxn<<1];
int head[maxx],dis[maxx];
int len,tot,n,m,v,S,T,K;
bool vis[maxn];
priority_queue<pair<int,int> >q;
inline void add(int x,int y,int z){
    e[++tot].v=y; e[tot].to=z;
    e[tot].next=head[x]; head[x]=tot;
}
inline bool dfs(int x){
    if(x==T) return true;
    vis[x]=true;
    for(int i=head[x];i;i=e[i].next){
        int y=e[i].v;
        if(!vis[y]) if(dfs(y)==true)
            return true;
    }
    return false;
}
inline void dijkstra(){
    if(!dfs(S)){puts("-1");return;}
    q.push(make_pair(0,S));
    if(S==T) v=-1;
    while(q.size()){
        int d=q.top().first,x=q.top().second; q.pop();
        if(x==T){
            if(++v==K){printf("%d",-d);return;}
            len=0;
        }
        else if(++len==maxx*15)break;//防止搜过多
        for(int i=head[x];i;i=e[i].next){
            int y=e[i].v;
            q.push(make_pair(d-e[i].to,y));
        }
    }
    puts("-1");
}
signed main(){
    n=read(); m=read();
    for(int i=1;i<=m;i++){
        int x=read(),y=read(),z=read();
        add(x,y,z);
    }
    S=read(); T=read(); K=read();
    dijkstra();
    return 0;
} 

Code2

//Dijkstra + A*

const int maxx=1001;
struct Node{
    int y,to,next;
}e[maxn],e1[maxn];
int head[maxx],tot,head1[maxx],cnt;//head1为反向边
int n,m,dis[maxx],S,T,K,vis[maxx];
inline void add(int x,int y,int z){
    e[++tot]=(Node){y,z,head[x]};
    head[x]=tot;
}
inline void add1(int x,int y,int z){//反边
    e1[++cnt]=(Node){y,z,head1[x]};
    head1[x]=cnt;
}
priority_queue<pair<int,int> >q;//注意:这是大根堆
inline void dijkstra(){
    mem(dis,0x3f); mem(vis,-1);
    dis[T]=0;
    q.push(make_pair(0,T));
    while(q.size()){
        int x=q.top().second;q.pop();
        if(!vis[x])continue; vis[x]=0;//每个点只贡献一次
        for(int i=head1[x];i;i=e1[i].next){
            int y=e1[i].y;
            if(dis[y]>dis[x]+e1[i].to){
                dis[y]=dis[x]+e1[i].to;
                q.push(make_pair(-dis[y],y));
            }
        }
    }
}
inline void A_star(){
    if(dis[S]==dis[0]){puts("-1");return;}//不连通
    if(S==T) K++;//路径必须有边吧。
    mem(vis,0);
    q.push(make_pair(-dis[S],S));
    while(q.size()){
        int x=q.top().second,d=-q.top().first-dis[x];
        q.pop(); vis[x]++;
        if(vis[T]==K){printf("%d",d);return;}
        for(int i=head[x];i;i=e[i].next){
            int y=e[i].y;
            if(vis[y]!=K)q.push(make_pair(-d-e[i].to-dis[y],y));
//重要剪枝——因为默认为大根堆并且每次取最小值,所以必须插入相反数或重载运算符。
        }
    }
    puts("-1");
}
signed main(){
    n=read(); m=read();
    for(int i=1;i<=m;i++){
        int x=read(),y=read(),z=read();
        add(x,y,z); add1(y,x,z);
    }
    S=read(); T=read(); K=read();
    dijkstra();//跑反图,求出优秀的估价函数
    A_star();
    return 0;
}   

Code3

//给出同学的 SPFA + A*,喜欢用spfa的同学可以看一眼
const int N=100010;
int tot,tc,n,m,s,t,k,x,y,l;
int lin[N],linc[N],vis[N],f[N];
struct gg {
    int x,y,next,v;
}a[N],e[N];

struct node {
    int pos,f,dis;
    bool operator<(node a)const{
        return a.f+a.dis<f+dis;
    }
};

inline void add(int x,int y,int v) {
    a[++tot].y=y;
    a[tot].next=lin[x];
    a[tot].v=v;
    lin[x]=tot;
}

inline void add_c(int x,int y,int v) {
    e[++tc].y=y;
    e[tc].next=linc[x];
    e[tc].v=v;
    linc[x]=tc;
}

inline void spfa(int t) {
    queue<int> q;
    memset(f,0x3f,sizeof(f));
    memset(vis,0,sizeof(vis));
    q.push(t); f[t]=0; vis[t]=1;
    while(q.size()) {
        int x=q.front(); q.pop(); vis[x]=0;
        for(int i=lin[x];i;i=a[i].next) {
            int y=a[i].y;
            if(f[y]>f[x]+a[i].v) {
                f[y]=f[x]+a[i].v;
                if(!vis[y]) {
                    vis[y]=1;
                    q.push(y);
                }
            }
        }
    }
}

priority_queue<node>q;

inline int astar() {
    if(f[s]==0x3f) return -1;
    int ts[N];
    memset(ts,0,sizeof(ts));
    node tmp,h;
    h.pos=s; h.f=0; h.dis=0;
    q.push(h);
    while(q.size()) {
        node x=q.top(); q.pop();
        ts[x.pos]++;
        if(ts[x.pos]==k&&x.pos==t) return x.dis;
        if(ts[x.pos]>k) continue;
        for(int i=linc[x.pos];i;i=e[i].next) {
            tmp.pos=e[i].y;
            tmp.f=f[e[i].y];
            tmp.dis=x.dis+e[i].v;
            q.push(tmp);
        }
    }
    return -1;
}

int main() {
    read(n); read(m);
    if(m==0) {cout<<"-1"<<endl; return 0;}
    for(int i=1;i<=m;i++) {
        read(x); read(y); read(l);
        add(y,x,l);
        add_c(x,y,l);
    }
    read(s); read(t); read(k);
    if(s==t)++k;
    spfa(t);
    cout<<astar()<<endl;
    return 0;
}

\[
The \quad End
\]

\[
\text{从白云看到,不见蓝天;从风雨寻回,梦的起点。-《梦想天空分外蓝》陈奕迅}
\]

原文地址:https://www.cnblogs.com/cbyyc/p/11601316.html

时间: 2024-10-11 13:02:23

? Acwing 178 && POJ 2449 ?的相关文章

图论(A*算法,K短路) :POJ 2449 Remmarguts&#39; Date

Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 Description "Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, h

POJ 2449 Remmarguts&#39; Date

Remmarguts' Date Time Limit: 4000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 244964-bit integer IO format: %lld      Java class name: Main "Good man never makes girls wait or breaks an appointment!" said the mandari

poj 2449 Remmarguts&#39; Date k短路

/*poj 2449 k短路 A* 估价函数是 s到i的距离+i到t的距离 */ #include<cstdio> #include<queue> #include<vector> #define inf 1e7 #define maxn 100010 using namespace std; int n,m,S,T,K,num1,num2,head1[maxn],head2[maxn],dis[maxn]; int q[maxn],hea,tai,f[maxn],cn

POJ 2449 Remmarguts&#39; Date (第k短路 A*搜索算法模板)

Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 22412   Accepted: 6085 Description "Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, h

poj 2449 Remmarguts&amp;#39; Date 【SPFA+Astar】【古典】

称号:poj 2449 Remmarguts' Date 意甲冠军:给定一个图,乞讨k短路. 算法:SPFA求最短路 + AStar 以下引用大牛的分析: 首先,为了说话方便,列出一些术语: 在启示式搜索中,对于每一个状态 x.启示函数 f(x) 一般是这种形式: f(x) = g(x) + h(x) 当中 g(x) 是从初始状态走到 x 所花的代价:h(x) 是从 x 走到目标状态所须要的代价的预计值. 相对于 h(x).另一个概念叫 h*(x),表示从 x 走到目标状态所须要的实际最小代价(

POJ 2449 Remmarguts&#39; Date ( Dijkstra + A* 求解第K短路 )

#include <iostream> #include <cstring> #include <queue> #include <fstream> using namespace std; #define E 100005 #define V 1005 #define INF 1 << 30 int heads[V], r_heads[V]; int dists[V]; bool visits[V]; int nEdgeNum, nNodeNu

poj 2449 Remmarguts&#39; Date(K短路,A*算法)

http://poj.org/problem?id=2449 大致题意:给出一个有向图,求从起点到终点的第K短路. K短路与A*算法详解  学长的博客... 算法过程 #include <stdio.h> #include <iostream> #include <algorithm> #include <set> #include <map> #include <vector> #include <math.h> #in

poj 2449 Remmarguts&#39; Date A*+spfa求第k短路

题意: 经典的第k短路,A*算法的经典应用之一. 分析: A*,已走的路程g+到终点的最短距离为启发函数,搜索过程中不判重,第k次到t节点时就求出了第k短路. 代码: //poj 2449 //sep9 #include <iostream> #include <queue> using namespace std; const int maxN=1024; const int maxM=100024; int n,m,s,t,k,e,ne; int head[maxN],nhea

POJ 2449 求第K短路

第一道第K短路的题目 QAQ 拿裸的DIJKSTRA + 不断扩展的A* 给2000MS过了 题意:大意是 有N个station 要求从s点到t点 的第k短路 (不过我看题意说的好像是从t到s 可能是出题人写错了) 从这题中还真的学到了很多1.第k短路的算法 A* 还有用边表实现dij (注:以下部份资料来源于网上)所谓A*就是启发是搜索 说白了就是给搜索一个顺序使得搜索更加合理减少无谓的搜索. 如何来确定搜索的顺序?..也就是用一个值来表示 这个值为f[n]..每次搜索取f[x]最小的拓展 那