虚拟DOM介绍

【转自】:https://www.jianshu.com/p/616999666920

为什么需要虚拟DOM

先介绍浏览器加载一个HTML文件需要做哪些事,帮助我们理解为什么我们需要虚拟DOM。webkit引擎的处理流程,一图胜千言:

所有浏览器的引擎工作流程都差不多,如上图大致分5步:创建DOM tree –> 创建Style Rules -> 构建Render tree -> 布局Layout –> 绘制Painting

第一步,用HTML分析器,分析HTML元素,构建一颗DOM树。

第二步:用CSS分析器,分析CSS文件和元素上的inline样式,生成页面的样式表。

第三步:将上面的DOM树和样式表,关联起来,构建一颗Render树。这一过程又称为Attachment。每个DOM节点都有attach方法,接受样式信息,返回一个render对象(又名renderer)。这些render对象最终会被构建成一颗Render树。

第四步:有了Render树后,浏览器开始布局,会为每个Render树上的节点确定一个在显示屏上出现的精确坐标值。

第五步:Render数有了,节点显示的位置坐标也有了,最后就是调用每个节点的paint方法,让它们显示出来。

当你用传统的源生api或jQuery去操作DOM时,浏览器会从构建DOM树开始从头到尾执行一遍流程。比如当你在一次操作时,需要更新10个DOM节点,理想状态是一次性构建完DOM树,再执行后续操作。但浏览器没这么智能,收到第一个更新DOM请求后,并不知道后续还有9次更新操作,因此会马上执行流程,最终执行10次流程。显然例如计算DOM节点的坐标值等都是白白浪费性能,可能这次计算完,紧接着的下一个DOM更新请求,这个节点的坐标值就变了,前面的一次计算是无用功。

即使计算机硬件一直在更新迭代,操作DOM的代价仍旧是昂贵的,频繁操作还是会出现页面卡顿,影响用户的体验。真实的DOM节点,哪怕一个最简单的div也包含着很多属性,可以打印出来直观感受一下:

虚拟DOM就是为了解决这个浏览器性能问题而被设计出来的。例如前面的例子,假如一次操作中有10次更新DOM的动作,虚拟DOM不会立即操作DOM,而是将这10次更新的diff内容保存到本地的一个js对象中,最终将这个js对象一次性attach到DOM树上,通知浏览器去执行绘制工作,这样可以避免大量的无谓的计算量。

实现虚拟DOM

我们来实现一个虚拟DOM。例如一个真实的DOM节点:代码见仓库里的src/firstStep

<div id="real-container">
    <p>Real DOM</p>
    <div>cannot update</div>
    <ul>
        <li className="item">Item 1</li>
        <li className="item">Item 2</li>
        <li className="item">Item 3</li>
    </ul>
</div>

用js对象来模拟DOM节点如下:

const tree = Element(‘div‘, { id: ‘virtual-container‘ }, [
    Element(‘p‘, {}, [‘Virtual DOM‘]),
    Element(‘div‘, {}, [‘before update‘]),
    Element(‘ul‘, {}, [
        Element(‘li‘, { class: ‘item‘ }, [‘Item 1‘]),
        Element(‘li‘, { class: ‘item‘ }, [‘Item 2‘]),
        Element(‘li‘, { class: ‘item‘ }, [‘Item 3‘]),
    ]),
]);

const root = tree.render();
document.getElementById(‘virtualDom‘).appendChild(root);

用js对象模拟DOM节点的好处是,页面的更新可以先全部反映在js对象上,操作内存中的js对象的速度显然要快多了。等更新完后,再将最终的js对象映射成真实的DOM,交由浏览器去绘制。

那具体怎么实现呢?看一下Element方法的具体实现:

function Element(tagName, props, children) {
    if (!(this instanceof Element)) {
        return new Element(tagName, props, children);
    }

    this.tagName = tagName;
    this.props = props || {};
    this.children = children || [];
    this.key = props ? props.key : undefined;

    let count = 0;
    this.children.forEach((child) => {
        if (child instanceof Element) {
            count += child.count;
        }
        count++;
    });
    this.count = count;
}

第一个参数是节点名(如div),第二个参数是节点的属性(如class),第三个参数是子节点(如ul的li)。除了这三个参数会被保存在对象上外,还保存了key和count。

有了js对象后,最终还需要将其映射成真实的DOM:

Element.prototype.render = function() {
    const el = document.createElement(this.tagName);
    const props = this.props;

    for (const propName in props) {
        setAttr(el, propName, props[propName]);
    }

    this.children.forEach((child) => {
        const childEl = (child instanceof Element) ? child.render() : document.createTextNode(child);
        el.appendChild(childEl);
    });

    return el;
};

上面都是自解释代码,根据DOM名调用源生的createElement创建真实DOM,将DOM的属性全都加到这个DOM元素上,如果有子元素继续递归调用创建子元素,并appendChild挂到该DOM元素上。这样就完成了从创建虚拟DOM到将其映射成真实DOM的全部工作。

Diff算法

我们已经完成了创建虚拟DOM并将其映射成真实DOM的工作,这样所有的更新都可以先反映到虚拟DOM上,如何反映呢?需要明确一下Diff算法。

两棵树如果完全比较时间复杂度是O(n^3),但参照《深入浅出React和Redux》一书中的介绍,React的Diff算法的时间复杂度是O(n)。要实现这么低的时间复杂度,意味着只能平层地比较两棵树的节点,放弃了深度遍历。这样做,似乎牺牲了一定的精确性来换取速度,但考虑到现实中前端页面通常也不会跨层级移动DOM元素,所以这样做是最优的。

我们新创建一棵树,用于和之前的树进行比较,代码见仓库里的src/secondStep

const newTree = Element(‘div‘, { id: ‘virtual-container‘ }, [
    Element(‘h3‘, {}, [‘Virtual DOM‘]),                     // REPLACE
    Element(‘div‘, {}, [‘after update‘]),                   // TEXT
    Element(‘ul‘, { class: ‘marginLeft10‘ }, [              // PROPS
        Element(‘li‘, { class: ‘item‘ }, [‘Item 1‘]),
        // Element(‘li‘, { class: ‘item‘ }, [‘Item 2‘]),    // REORDER remove
        Element(‘li‘, { class: ‘item‘ }, [‘Item 3‘]),
    ]),
]);

只考虑平层地Diff的话,就简单多了,只需要考虑以下4种情况:

第一种是最简单的,节点类型变了,例如下图中的P变成了h3。我们将这个过程称之为REPLACE。直接将旧节点卸载(componentWillUnmount)并装载新节点(componentWillMount)就行了。

(为简单起见上图隐藏了文本节点)

旧节点包括下面的子节点都将被卸载,如果新节点和旧节点仅仅是类型不同,但下面的所有子节点都一样时,这样做显得效率不高。但为了避免O(n^3)的时间复杂度,这样做是值得的。这也提醒了React开发者,应该避免无谓的节点类型的变化,例如运行时将div变成p就没什么太大意义。

第二种也比较简单,节点类型一样,仅仅属性或属性值变了。

renderA: <ul>
renderB: <ul class: ‘marginLeft10‘>
=> [addAttribute class "marginLeft10"]

我们将这个过程称之为PROPS。此时不会触发节点的卸载(componentWillUnmount)和装载(componentWillMount)动作。而是执行节点更新(shouldComponentUpdate到componentDidUpdate的一系列方法)。

function diffProps(oldNode, newNode) {
    const oldProps = oldNode.props;
    const newProps = newNode.props;

    let key;
    const propsPatches = {};
    let isSame = true;

    // find out different props
    for (key in oldProps) {
        if (newProps[key] !== oldProps[key]) {
            isSame = false;
            propsPatches[key] = newProps[key];
        }
    }

    // find out new props
    for (key in newProps) {
        if (!oldProps.hasOwnProperty(key)) {
            isSame = false;
            propsPatches[key] = newProps[key];
        }
    }

    return isSame ? null : propsPatches;
}

第三种是文本变了,文本对也是一个Text Node,也比较简单,直接修改文字内容就行了,我们将这个过程称之为TEXT。

第四种是移动,增加,删除子节点,我们将这个过程称之为REORDER。具体可以看这篇虚拟DOM Diff算法解析。例如:

在中间插入一个节点,程序员写代码很简单:$(B).after(F)。但如何高效地插入呢?简单粗暴的做法是:卸载C,装载F,卸载D,装载C,卸载E,装载D,装载E。如下图:

我们写JSX代码时,如果没有给数组或枚举类型定义一个key,就会看到下面这样的warning。React提醒我们,没有key的话,涉及到移动,增加,删除子节点的操作时,就会用上面那种简单粗暴的做法来更新。虽然程序运行不会有错,但效率太低,因此React会给我们一个warning。

如果我们在JSX里为数组或枚举型元素增加上key后,React就能根据key,直接找到具体的位置进行操作,效率比较高。如下图:

常见的最小编辑距离问题,可以用Levenshtein Distance算法来实现,时间复杂度是O(M*N),但通常我们只要一些简单的移动就能满足需要,降低点精确性,将时间复杂度降低到O(max(M, N)即可。具体可参照采用深度剖析:如何实现一个 Virtual DOM 算法里的一个算法一文。或自行阅读例子中的源代码

最终Diff出来的结果如下:

{
    1: [ {type: REPLACE, node: Element} ],
    4: [ {type: TEXT, content: "after update"} ],
    5: [ {type: PROPS, props: {class: "marginLeft10"}}, {type: REORDER, moves: [{index: 2, type: 0}]} ],
    6: [ {type: REORDER, moves: [{index: 2, type: 0}]} ],
    8: [ {type: REORDER, moves: [{index: 2, type: 0}]} ],
    9: [ {type: TEXT, content: "Item 3"} ],
}

映射成真实DOM

虚拟DOM有了,Diff也有了,现在就可以将Diff应用到真实DOM上了。代码见仓库里的src/thirdStep

深度遍历DOM将Diff的内容更新进去:

function dfsWalk(node, walker, patches) {
    const currentPatches = patches[walker.index];

    const len = node.childNodes ? node.childNodes.length : 0;
    for (let i = 0; i < len; i++) {
        walker.index++;
        dfsWalk(node.childNodes[i], walker, patches);
    }

    if (currentPatches) {
        applyPatches(node, currentPatches);
    }
}

具体更新的代码如下,其实就是根据Diff信息调用源生API操作DOM:

function applyPatches(node, currentPatches) {
    currentPatches.forEach((currentPatch) => {
        switch (currentPatch.type) {
            case REPLACE: {
                const newNode = (typeof currentPatch.node === ‘string‘)
                    ? document.createTextNode(currentPatch.node)
                    : currentPatch.node.render();
                node.parentNode.replaceChild(newNode, node);
                break;
            }
            case REORDER:
                reorderChildren(node, currentPatch.moves);
                break;
            case PROPS:
                setProps(node, currentPatch.props);
                break;
            case TEXT:
                if (node.textContent) {
                    node.textContent = currentPatch.content;
                } else {
                    // ie
                    node.nodeValue = currentPatch.content;
                }
                break;
            default:
                throw new Error(`Unknown patch type ${currentPatch.type}`);
        }
    });
}

虚拟DOM的目的是将所有操作累加起来,统计计算出所有的变化后,统一更新一次DOM。其实即使不懂原理,业务代码照样写,但理解原理后,出了什么新东东如React Fiber才能快速跟上。前端就是这样痛并快乐着。

原文地址:https://www.cnblogs.com/fengyuexuan/p/11083419.html

时间: 2024-12-12 07:43:52

虚拟DOM介绍的相关文章

Virtual DOM 虚拟DOM的理解(转)

作者:戴嘉华 转载请注明出处并保留原文链接( #13 )和作者信息. 目录: 1 前言 2 对前端应用状态管理思考 3 Virtual DOM 算法 4 算法实现 4.1 步骤一:用JS对象模拟DOM树 4.2 步骤二:比较两棵虚拟DOM树的差异 4.3 步骤三:把差异应用到真正的DOM树上 5 结语 6 References 1 前言 本文会在教你怎么用 300~400 行代码实现一个基本的 Virtual DOM 算法,并且尝试尽量把 Virtual DOM 的算法思路阐述清楚.希望在阅读本

深入理解react中的虚拟DOM、diff算法

文章结构: React中的虚拟DOM是什么? 虚拟DOM的简单实现(diff算法) 虚拟DOM的内部工作原理 React中的虚拟DOM与Vue中的虚拟DOM比较 React中的虚拟DOM是什么?   虽然React中的虚拟DOM很好用,但是这是一个无心插柳的结果.   React的核心思想:一个Component拯救世界,忘掉烦恼,从此不再操心界面. 1. Virtual Dom快,有两个前提 1.1 Javascript很快  Chrome刚出来的时候,在Chrome里跑Javascript非

React虚拟DOM具体实现——利用节点json描述还原dom结构

前两天,帮朋友解决一个问题: ajax请求得到的数据,是一个对象数组,每个对象中,具有三个属性,parentId,id,name,然后根据这个数据生成对应的结构. 刚好最近在看React,并且了解到其中的虚拟DOM,其实,就是利用json数据来代替DOM结构表示,然后利用这个json数据,渲染出DOM树,总体添加到页面中.下面,我就通过介绍我如何实现上面实际问题的思路,一边完成实际需求,一边实现React中虚拟DOM渲染成DOM的原理. 模拟数据结构如下: 1 var allJson = [{

图解vue中 v-for 的 :key 的作用,虚拟dom Diff算法

其实不只是vue,react中在执行列表渲染时也会要求给每个组件添加上key这个属性. 要解释key的作用,不得不先介绍一下虚拟DOM的Diff算法了. 我们知道,vue和react都实现了一套虚拟DOM,使我们可以不直接操作DOM元素,只操作数据便可以重新渲染页面.而隐藏在背后的原理便是其高效的Diff算法. vue和react的虚拟DOM的Diff算法大致相同,其核心是基于两个简单的假设: 1.两个相同的组件产生类似的DOM结构,不同的组件产生不同的DOM结构. 2.同一层级的一组节点,他们

vue----核心虚拟dom

一.真实DOM和其解析流程? 浏览器渲染引擎工作流程都差不多,大致分为5步,创建DOM树——创建StyleRules——创建Render树——布局Layout——绘制Painting 第一步,用HTML分析器,分析HTML元素,构建一颗DOM树(标记化和树构建). 第二步,用CSS分析器,分析CSS文件和元素上的inline样式,生成页面的样式表. 第三步,将DOM树和样式表,关联起来,构建一颗Render树(这一过程又称为Attachment).每个DOM节点都有attach方法,接受样式信息

深入剖析:Vue核心之虚拟DOM

前言使用 Vue 做项目也有两年时间了,对 Vue 的 api也用的比较得心应手了,虽然对 Vue 的一些实现原理也耳有所闻,例如 虚拟DOM.flow.数据驱动.路由原理等等,但是自己并没有特意去探究这些原理的基础以及 Vue 源码是如何利用这些原理进行框架实现的,所以利用空闲时间,进行 Vue 框架相关技术原理和 Vue 框架的具体实现的整理.如果你对 Vue 的实现原理很感兴趣,那么就可以开始这系列文章的阅读,将会为你打开 Vue 的底层世界大门,对它的实现细节一探究竟. 本文为 Virt

React入门-JSX和虚拟dom

1.JSX理解 举例: const element = <h1>Hello, world!</h1>; 这被称为 JSX,是一个 JavaScript 的语法扩展.建议在 React 中配合使用 JSX,JSX 可以生成 React “元素”,而且JSX 可以很好地描述 UI 应该呈现出它应有交互的本质形式.JSX 可能会使人联想到模版语言,但它具有 JavaScript 的全部功能. 为什么用JSX? React 认为渲染逻辑本质上与其他 UI 逻辑内在耦合,比如,在 UI 中需

Vue源码学习(六)之虚拟DOM——Vue中的DOM-Diff (上)

1. 前言 在上一篇文章介绍VNode的时候我们说了,VNode最大的用途就是在数据变化前后生成真实DOM对应的虚拟DOM节点,然后就可以对比新旧两份VNode,找出差异所在,然后更新有差异的DOM节点,最终达到以最少操作真实DOM更新视图的目的.而对比新旧两份VNode并找出差异的过程就是所谓的DOM-Diff过程.DOM-Diff算法时整个虚拟DOM的核心所在,那么接下来,我们就以源码出发,深入研究一下Vue中的DOM-Diff过程是怎样的. 2. patch 在Vue中,把 DOM-Dif

虚拟DOM

DOM(Document Object Model)是很慢的,其元素非常庞大,页面的性能问题鲜有由JS引起的,大部分都是由DOM操作引起的.如果对前端工作进行抽象的话,主要就是维护状态和更新视图:而更新视图和维护状态都需要DOM操作. 在jQuery出现以前,我们直接操作DOM结构,这种方法复杂度高,兼容性也较差:有了jQuery强大的选择器以及高度封装的API,我们可以更方便的操作DOM,jQuery帮我们处理兼容性问题,同时也使DOM操作变得简单:MVVM使用数据双向绑定,使得我们完全不需要