B树和B+树的增/删结点(转)

add by zhj: 算法其实不复杂,尤其是增加结点的算法,逻辑很简单,但有时自己想不到。

增加结点算法:首先,对于B树,没有重复结点,所以新插入的数据一定会落在叶结点上,或者说落在叶结点的所有父结点切分成的开区间上。

不断的增加结点时,一定会有某个开区间的关键字个数先达到上限数+1,这时需要对该叶结点拆分,以中间值为拆分点,拆分为两个叶结点,

且中间值上移到父结点。然后判断父结点的关键字个数,如果也达到上限数+1,再次进行拆分。一直循环,直到某个父结点的关键字个数<=关键字

个数上限,循环结束。由此过程可知,添加结点时,先从上到下查找,找到插入的位置,插入后,再从下向上调整。

原文:https://www.cnblogs.com/nullzx/p/8729425.html

1. B树

1. B树的定义

B树也称B-树,它是一颗多路平衡查找树。我们描述一颗B树时需要指定它的阶数,阶数表示了一个结点最多有多少个孩子结点,一般用字母m表示阶数。当m取2时,就是我们常见的二叉搜索树。

一颗m阶的B树定义如下:

1)每个结点最多有m-1个关键字。

2)根结点最少可以只有1个关键字。

3)非根结点至少有Math.ceil(m/2)-1个关键字。

4)每个结点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。

5)所有叶子结点都位于同一层,或者说根结点到每个叶子结点的长度都相同。

上图是一颗阶数为4的B树。在实际应用中的B树的阶数m都非常大(通常大于100),所以即使存储大量的数据,B树的高度仍然比较小。每个结点中存储了关键字(key)和关键字对应的数据(data),以及孩子结点的指针。我们将一个key和其对应的data称为一个记录但为了方便描述,除非特别说明,后续文中就用key来代替(key, value)键值对这个整体。在数据库中我们将B树(和B+树)作为索引结构,可以加快查询速速,此时B树中的key就表示键,而data表示了这个键对应的条目在硬盘上的逻辑地址。

1.2 B树的插入操作

插入操作是指插入一条记录,即(key, value)的键值对。如果B树中已存在需要插入的键值对,则用需要插入的value替换旧的value。若B树不存在这个key,则一定是在叶子结点中进行插入操作。

1)根据要插入的key的值,找到叶子结点并插入。

2)判断当前结点key的个数是否小于等于m-1,若满足则结束,否则进行第3步。

3)以结点中间的key为中心分裂成左右两部分,然后将这个中间的key插入到父结点中,这个key的左子树指向分裂后的左半部分,这个key的右子支指向分裂后的右半部分,然后将当前结点指向父结点,继续进行第3步。

下面以5阶B树为例,介绍B树的插入操作,在5阶B树中,结点最多有4个key,最少有2个key



a)在空树中插入39

此时根结点就一个key,此时根结点也是叶子结点



b)继续插入22,97和41

根结点此时有4个key



c)继续插入53

插入后超过了最大允许的关键字个数4,所以以key值为41为中心进行分裂,结果如下图所示,分裂后当前结点指针指向父结点,满足B树条件,插入操作结束。当阶数m为偶数时,需要分裂时就不存在排序恰好在中间的key,那么我们选择中间位置的前一个key或中间位置的后一个key为中心进行分裂即可。



d)依次插入13,21,40,同样会造成分裂,结果如下图所示。



e)依次插入30,27, 33 ;36,35,34 ;24,29,结果如下图所示。



f)插入key值为26的记录,插入后的结果如下图所示。

当前结点需要以27为中心分裂,并向父结点进位27,然后当前结点指向父结点,结果如下图所示。

进位后导致当前结点(即根结点)也需要分裂,分裂的结果如下图所示。

分裂后当前结点指向新的根,此时无需调整。



g)最后再依次插入key为17,28,29,31,32的记录,结果如下图所示。



在实现B树的代码中,为了使代码编写更加容易,我们可以将结点中存储记录的数组长度定义为m而非m-1,这样方便底层的结点由于分裂向上层插入一个记录时,上层有多余的位置存储这个记录。同时,每个结点还可以存储它的父结点的引用,这样就不必编写递归程序。

一般来说,对于确定的m和确定类型的记录,结点大小是固定的,无论它实际存储了多少个记录。但是分配固定结点大小的方法会存在浪费的情况,比如key为28,29所在的结点,还有2个key的位置没有使用,但是已经不可能继续在插入任何值了,因为这个结点的前序key是27,后继key是30,所有整数值都用完了。所以如果记录先按key的大小排好序,再插入到B树中,结点的使用率就会很低,最差情况下使用率仅为50%。

1.3 B树的删除操作

删除操作是指,根据key删除记录,如果B树中的记录中不存对应key的记录,则删除失败。

1)如果当前需要删除的key位于非叶子结点上,则用后继key(这里的后继key均指后继记录的意思)覆盖要删除的key,然后在后继key所在的子支中删除该后继key。此时后继key一定位于叶子结点上,这个过程和二叉搜索树删除结点的方式类似。删除这个记录后执行第2步

2)该结点key个数大于等于Math.ceil(m/2)-1,结束删除操作,否则执行第3步。

3)如果兄弟结点key个数大于Math.ceil(m/2)-1,则父结点中的key下移到该结点,兄弟结点中的一个key上移,删除操作结束。

否则,将父结点中的key下移与当前结点及它的兄弟结点中的key合并,形成一个新的结点。原父结点中的key的两个孩子指针就变成了一个孩子指针,指向这个新结点。然后当前结点的指针指向父结点,重复上第2步。

有些结点它可能即有左兄弟,又有右兄弟,那么我们任意选择一个兄弟结点进行操作即可。

下面以5阶B树为例,介绍B树的删除操作,5阶B树中,结点最多有4个key,最少有2个key



a)原始状态



b)在上面的B树中删除21,删除后结点中的关键字个数仍然大于等2,所以删除结束。



c)在上述情况下接着删除27。从上图可知27位于非叶子结点中,所以用27的后继替换它。从图中可以看出,27的后继为28,我们用28替换27,然后在28(原27)的右孩子结点中删除28。删除后的结果如下图所示。

删除后发现,当前叶子结点的记录的个数小于2,而它的兄弟结点中有3个记录(当前结点还有一个右兄弟,选择右兄弟就会出现合并结点的情况,不论选哪一个都行,只是最后B树的形态会不一样而已),我们可以从兄弟结点中借取一个key。所以父结点中的28下移,兄弟结点中的26上移,删除结束。结果如下图所示。



d)在上述情况下接着32,结果如下图。

当删除后,当前结点中只key,而兄弟结点中也仅有2个key。所以只能让父结点中的30下移和这个两个孩子结点中的key合并,成为一个新的结点,当前结点的指针指向父结点。结果如下图所示。

当前结点key的个数满足条件,故删除结束。



e)上述情况下,我们接着删除key为40的记录,删除后结果如下图所示。

同理,当前结点的记录数小于2,兄弟结点中没有多余key,所以父结点中的key下移,和兄弟(这里我们选择左兄弟,选择右兄弟也可以)结点合并,合并后的指向当前结点的指针就指向了父结点。

同理,对于当前结点而言只能继续合并了,最后结果如下所示。

合并后结点当前结点满足条件,删除结束。

2.B+树

2.1 B+树的定义

各种资料上B+树的定义各有不同,一种定义方式是关键字个数和孩子结点个数相同。这里我们采取维基百科上所定义的方式,即关键字个数比孩子结点个数小1,这种方式是和B树基本等价的。上图就是一颗阶数为4的B+树。

除此之外B+树还有以下的要求。

1)B+树包含2种类型的结点:内部结点(也称索引结点)和叶子结点。根结点本身即可以是内部结点,也可以是叶子结点。根结点的关键字个数最少可以只有1个。

2)B+树与B树最大的不同是内部结点不保存数据,只用于索引,所有数据(或者说记录)都保存在叶子结点中。

3) m阶B+树表示了内部结点最多有m-1个关键字(或者说内部结点最多有m个子树),阶数m同时限制了叶子结点最多存储m-1个记录。

4)内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。

5)每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。

2.2 B+树的插入操作

1)若为空树,创建一个叶子结点,然后将记录插入其中,此时这个叶子结点也是根结点,插入操作结束。

2)针对叶子类型结点:根据key值找到叶子结点,向这个叶子结点插入记录。插入后,若当前结点key的个数小于等于m-1,则插入结束。否则将这个叶子结点分裂成左右两个叶子结点,左叶子结点包含前m/2个记录,右结点包含剩下的记录,将第m/2+1个记录的key进位到父结点中(父结点一定是索引类型结点),进位到父结点的key左孩子指针向左结点,右孩子指针向右结点。将当前结点的指针指向父结点,然后执行第3步。

3)针对索引类型结点:若当前结点key的个数小于等于m-1,则插入结束。否则,将这个索引类型结点分裂成两个索引结点,左索引结点包含前(m-1)/2个key,右结点包含m-(m-1)/2个key,将第m/2个key进位到父结点中,进位到父结点的key左孩子指向左结点, 进位到父结点的key右孩子指向右结点。将当前结点的指针指向父结点,然后重复第3步。

下面是一颗5阶B树的插入过程,5阶B数的结点最少2个key,最多4个key。



a)空树中插入5



b)依次插入8,10,15



c)插入16

插入16后超过了关键字的个数限制,所以要进行分裂。在叶子结点分裂时,分裂出来的左结点2个记录,右边3个记录,中间key成为索引结点中的key,分裂后当前结点指向了父结点(根结点)。结果如下图所示。

当然我们还有另一种分裂方式,给左结点3个记录,右结点2个记录,此时索引结点中的key就变为15。



d)插入17



e)插入18,插入后如下图所示

当前结点的关键字个数大于5,进行分裂。分裂成两个结点,左结点2个记录,右结点3个记录,关键字16进位到父结点(索引类型)中,将当前结点的指针指向父结点。

当前结点的关键字个数满足条件,插入结束。



f)插入若干数据后



g)在上图中插入7,结果如下图所示

当前结点的关键字个数超过4,需要分裂。左结点2个记录,右结点3个记录。分裂后关键字7进入到父结点中,将当前结点的指针指向父结点,结果如下图所示。

当前结点的关键字个数超过4,需要继续分裂。左结点2个关键字,右结点2个关键字,关键字16进入到父结点中,将当前结点指向父结点,结果如下图所示。

当前结点的关键字个数满足条件,插入结束。

2.3 B+树的删除操作

如果叶子结点中没有相应的key,则删除失败。否则执行下面的步骤

1)删除叶子结点中对应的key。删除后若结点的key的个数大于等于Math.ceil(m-1)/2 – 1,删除操作结束,否则执行第2步。

2)若兄弟结点key有富余(大于Math.ceil(m-1)/2 – 1),向兄弟结点借一个记录,同时用借到的key替换父结(指当前结点和兄弟结点共同的父结点)点中的key,删除结束。否则执行第3步。

3)若兄弟结点中没有富余的key,则当前结点和兄弟结点合并成一个新的叶子结点,并删除父结点中的key(父结点中的这个key两边的孩子指针就变成了一个指针,正好指向这个新的叶子结点),将当前结点指向父结点(必为索引结点),执行第4步(第4步以后的操作和B树就完全一样了,主要是为了更新索引结点)。

4)若索引结点的key的个数大于等于Math.ceil(m-1)/2 – 1,则删除操作结束。否则执行第5步

5)若兄弟结点有富余,父结点key下移,兄弟结点key上移,删除结束。否则执行第6步

6)当前结点和兄弟结点及父结点下移key合并成一个新的结点。将当前结点指向父结点,重复第4步。

注意,通过B+树的删除操作后,索引结点中存在的key,不一定在叶子结点中存在对应的记录。

下面是一颗5阶B树的删除过程,5阶B数的结点最少2个key,最多4个key。



a)初始状态



b)删除22,删除后结果如下图

删除后叶子结点中key的个数大于等于2,删除结束



c)删除15,删除后的结果如下图所示

删除后当前结点只有一个key,不满足条件,而兄弟结点有三个key,可以从兄弟结点借一个关键字为9的记录,同时更新将父结点中的关键字由10也变为9,删除结束。



d)删除7,删除后的结果如下图所示

当前结点关键字个数小于2,(左)兄弟结点中的也没有富余的关键字(当前结点还有个右兄弟,不过选择任意一个进行分析就可以了,这里我们选择了左边的),所以当前结点和兄弟结点合并,并删除父结点中的key,当前结点指向父结点。

此时当前结点的关键字个数小于2,兄弟结点的关键字也没有富余,所以父结点中的关键字下移,和两个孩子结点合并,结果如下图所示。

3.参考内容

[1] B+树介绍

[2] 从MySQL Bug#67718浅谈B+树索引的分裂优化

[3] B+树的几点总结

原文地址:https://www.cnblogs.com/ajianbeyourself/p/11221951.html

时间: 2024-10-05 07:40:37

B树和B+树的增/删结点(转)的相关文章

hrbust 1840 (树状数组第k大) 删点使用

小橙子 Time Limit: 2000 MS Memory Limit: 32768 K Total Submit: 2(2 users) Total Accepted: 1(1 users) Rating:  Special Judge: No Description 玻璃小屋里曾经住着一个小橙子.小橙子小小的,性格很直.直性子的小橙子傻乎乎的,还很爱看火影.海贼王什么的.他收藏了很多动画片的光碟,光碟太多了,他打算整理一下. 他口中念念有词:“这个,插入第三个光碟前面,这个,插入第五个光碟

HDOJ1556 Color the ball 【线段树】+【树状数组】+【标记法】

Color the ball Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 8272    Accepted Submission(s): 4239 Problem Description N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的"小飞鸽"牌

B-Tree 漫谈 (从二叉树到二叉搜索树到平衡树到红黑树到B树到B+树到B*树)

关于B树的学习还是需要做点笔记. B树是为磁盘或者其他直接存取辅助存储设备而设计的一种平衡查找树.B树与红黑树的不同在于,B树可以有很多子女,从几个到几千个.比如一个分支因子为1001,高度为2的B树,他可以存储超过10亿个关键字,尽管如此,因为根节点(只有一个)保留在主存中,故这可书中,寻找某一个关键字之多需要两次磁盘存取. 关于磁盘的结构,以及写入,读取数据的原理,这里就略过了. 一.概述: 1) 对于B树的每个节点x有: a)n[x],当前存储在结点x中的关键字数, b)关键字以非降序存放

BZOJ 3217 ALOEXT 替罪羊树套Trie树

题目大意:维护一个序列,支持以下操作: 1.在某个位置插入一个数 2.删除某个位置上的数 3.修改某个位置上的数 4.求某段区间中的次大值与区间中另一个数的异或值的最大值 强制在线 替罪羊树套Trie树...终于尼玛A了...7.4KB的大代码啊- - 插入和修改同带插入区间k小值 删除要打标记不能直接删 删除的时候注意 删除导致的不平衡不要重建 否则复杂度无法保证 因此每个节点维护一个max_size代表历史size最大值 判断不平衡时用这个变量来判断即可 注意访问替罪羊树的时候一定要判断当前

B树、B-树、B+树、B*树介绍,和B+树更适合做文件索引的原因

今天看数据库,书中提到:由于索引是采用 B 树结构存储的,所以对应的索引项并不会被删除,经过一段时间的增删改操作后,数据库中就会出现大量的存储碎片, 这和磁盘碎片.内存碎片产生原理是类似的,这些存储碎片不仅占用了存储空间,而且降低了数据库运行的速度.如果发现索引中存在过多的存储碎片的话就要进行 “碎片整理”了,最方便的“碎片整理” 手段就是重建索引, 重建索引会将先前创建的索引删除然后重新创建索引,主流数据库管理系统都提供了重建索引的功能,比如 REINDEX.REBUILD 等,如果使用的数据

面试总结(数据库索引、B树、B+树)

1.  数据库系统维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法.这种数据结构,就是索引.索引的实现通常使用B树及其变种B+树. 创建索引可以大大提高系统的性能. 第一.通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性. 第二.可以大大加快数据的检索速度,这也是创建索引的最主要的原因. 第三.可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义. 第四.在使用分组和排序子句进行数据检索时,同样可以显著减

跳跃表,字典树(单词查找树,Trie树),后缀树,KMP算法,AC 自动机相关算法原理详细汇总

第一部分:跳跃表 本文将总结一种数据结构:跳跃表.前半部分跳跃表性质和操作的介绍直接摘自<让算法的效率跳起来--浅谈"跳跃表"的相关操作及其应用>上海市华东师范大学第二附属中学 魏冉.之后将附上跳跃表的源代码,以及本人对其的了解.难免有错误之处,希望指正,共同进步.谢谢. 跳跃表(Skip List)是1987年才诞生的一种崭新的数据结构,它在进行查找.插入.删除等操作时的期望时间复杂度均为O(logn),有着近乎替代平衡树的本领.而且最重要的一点,就是它的编程复杂度较同类

trie树(字典树)

1. trie树,又名字典树,顾名思义,它是可以用来作字符串查找的数据结构,它的查找效率比散列表还要高. trie树的建树: 比如有字符串"ab" ,"adb","adc"   可以建立字典树如图: 树的根节点head不存储信息,它有26个next指针,分别对应着字符a,b,c等.插入字符串ab时,next['a'-'a']即next[0]为空,这是申请一个结点放在next[0]的位置,插入字符串db时,next['d'-'a']即next[3]

B树、B+树、红黑树、AVL树比较

B树是为了提高磁盘或外部存储设备查找效率而产生的一种多路平衡查找树. B+树为B树的变形结构,用于大多数数据库或文件系统的存储而设计. B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况.为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写.磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读