开源工具Arena,数据科学家再也不用为Kubernetes犯难啦!

2018年7月,阿里云将深度学习工具Arena贡献给了开源社区,数据科学家无需学习底层IT资源使用,即可在云端运行深度学习,一分钟内启动深度学习任务,十五分钟内创建异构计算集群。

为什么要有Arena这样的工具?

现在Kubernetres社区最流行的深度学习解决方案是KubeFlow,Arena是不是又重新造了个轮子?KubeFlow是基于Kubernetes构建的可组合,便携式, 可扩展的机器学习技术栈,支持实现从JupyterHub模型开发,TFJob模型训练到TF-serving,Seldon预测端到端的解决方案。但是KubeFlow需要用户精通Kubernetes,比如写一个TFJob的部署yaml文件,这对于机器学习平台最主要的使用者---数据科学家来说是非常有挑战的事情。

这与数据科学家的期望还有比较大的差距,数据科学家关心的是三件事:

数据从哪里来
如何运行机器学习的代码
训练结果(模型和日志)如何查看
数据科学家编写一些简单的脚本,在桌面机上运行机器学习代码,这是他们熟悉和喜欢的工作方式。但是利用桌面机进行模型训练,又会遇到由于硬盘空间有限导致处理数据量不足,无法使用分布式训练导致计算力受限等问题。

为此我们开发了Arena,用一个命令行工具屏蔽所有底层资源、环境管理、任务调度和GPU调度分配的复杂性,它帮助数据科学家以一种简单熟悉的方式提交训练任务并且检查训练进展。数据科学家在调用Arena的时候可以指定数据来源,代码下载和是否使用TensorBoard查看训练效果。

Arena有怎样的作用?

Arena目前支持单机训练和PS-Worker模式的分布式训练,其后端实现依赖于KubeFlow提供的TFJob,很快也会扩展到MPIJob,PytorchJob。

image

同时也支持实时训练的运维包括:
? 利用top命令监控GPU资源的分配和调度
? 支持CPU,GPU的资源监控
? 训练日志的实时查询

未来我们希望能够通过Arena实现深度学习生产流水线 - 集成训练数据管理,实验任务管理,模型开发,持续训练、评估,上线预测全流程。

Arena的目标就是让数据科学家简单的释放KubeFlow的洪荒之力,像桌面机上训练一样简单,同时又拥有了集群级别调度和管理的掌控性。为了能够更好的在社区内共享和合作,我们已经在github上开源了自己的代码:https://github.com/AliyunContainerService/arena , 欢迎大家了解和使用,如果您觉得不错,请给我们点赞。如果您希望贡献代码,我们非常欢迎。

Arena背后的故事,阿里云容器深度学习解决方案

开源工具Arena脱胎于阿里云深度学习解决方案, 该方案已经支持多种深度学习框架(如Tensorflow、Caffe、Hovorod、Pytorch等),从始至终地支撑深度学习的整条生产流水线(集成训练数据管理、实验任务管理、模型开发、持续训练及评估、上线预测等环节)。

该方案深度整合阿里云资源与服务,高效使用CPU、GPU等异构资源,统一容器化编排管控,并提供多维度监控告警和运维平台。

写在最后

“深度学习为人工智能带来变革式的蓬勃发展,然而对计算和数据资源的依赖也急剧增加。” 阿里云相关技术负责人张凯表示:“基于容器和异构计算技术,阿里云为大规模训练提供端到端的支持,不断打磨使用更简单、功能更强大的深度学习解决方案。”

更多阿里云上深度学习分享可以移步:https://yq.aliyun.com/teams/11/type_blog-cid_211-page_1
如《Kubeflow实战系列-五篇》、《打造深度学习的云端实验室-三篇》、《TensorFlow的实验-六篇》

产品详情,请移步:https://cn.aliyun.com/solution/devops/deeplearning

近期直播回放页面:https://yq.aliyun.com/webinar/play/487
相关产品详情页面:https://promotion.aliyun.com/ntms/act/blockchainshow.html

原文地址:http://blog.51cto.com/13927391/2161153

时间: 2024-10-01 05:22:12

开源工具Arena,数据科学家再也不用为Kubernetes犯难啦!的相关文章

开源工具Arena,数据科学家再也不用为Kubernetes犯难啦

摘要: 为什么要用Kubernetes去难为数据科学家呢? 2018年7月,阿里云将深度学习工具Arena贡献给了开源社区,数据科学家无需学习底层IT资源使用,即可在云端运行深度学习,一分钟内启动深度学习任务,十五分钟内创建异构计算集群. 为什么要有Arena这样的工具?现在Kubernetres社区最流行的深度学习解决方案是KubeFlow,Arena是不是又重新造了个轮子?KubeFlow是基于Kubernetes构建的可组合,便携式, 可扩展的机器学习技术栈,支持实现从JupyterHub

云计算学习路线图素材课件:云计算常用的开源工具

随着互联网的高速发展以及国家政策扶持,我国云计算行业发展迅猛,云计算人才也成为稀缺高薪人才.众所周知,云计算和开源是相爱相生的关系,借助开源社区的力量,云计算技术迅速占领市场,不过2020年常用的云计算开源工具有哪些呢? 1.Kubernetes 过去两年Kuberentes已成为火爆的开源项目之一,相信在未来Kuberentes的势头会更劲,其拥有大量的扩展工具,其优势在于: 1)通过基于角色的访问控制可以更好地支持企业部署: 2)将Kuberentes从单一用户操作系统转移到Unix: 3)

数据科学家应该掌握的5个工具

本文转自:http://www.36dsj.com/archives/34020 当谈及到分析你编纂的数据时,有大量的工具可以帮助你更好的理解数据,本文总结出了一个包括5个数据科学工具的列表,同时这也是你在当今的社会形势下人们应该掌握的5个数据科学工具. 即使是知识渊博的数据科学家也能提升他们的技术水平.当谈及到分析你编纂的数据时,有大量的工具可以帮助你更好的理解数据.我们与我们的数据科学指导者探讨了很久,最后总结出了一个包括5个数据科学工具的列表,同时这也是你在当今的社会形势下应该掌握的5个数

大数据领域的顶级开源工具大集合

如今,从小型初创企业到行业巨头,各种规模的供应商都在使用开源来处理大数据和运行预测分析.本文介绍了一些大数据方面的顶级开源工具,分为四个领域:数据存储,开发平台,开发工具和集成,分析和报告工具. 随着大数据与预测分析的成熟,开源作为底层技术授权解决方案的最大贡献者的优势越来越明显. 如今,从小型初创企业到行业巨头,各种规模的供应商都在使用开源来处理大数据和运行预测分析.借助开源与云计算技术,新兴公司甚至在很多方面都可以与大厂商抗衡. 以下是一些大数据方面的顶级开源工具,分为四个领域:数据存储.开

Hadoop和大数据:60款顶级大数据开源工具

一.Hadoop相关工具 1. Hadoop Apache的Hadoop项目已几乎与大数据划上了等号.它不断壮大起来,已成为一个完整的生态系统,众多开源工具面向高度扩展的分布式计算. 支持的操作系统:Windows.Linux和OS X. 相关链接: http://hadoop.apache.org 2. Ambari 作为Hadoop生态系统的一部分,这个Apache项目提供了基于Web的直观界面,可用于配置.管理和监控Hadoop集群.有些开发人员想把Ambari的功能整合到自己的应用程序当

13款开源Java大数据工具,从理论到实践的剖析

大数据几乎已成为所有商业领域共有的最新趋势,然而大数据究竟是什么?是噱头.泡沫,又或是真如传言一样的重要. 事实上,大数据是个非常简单的术语--就像它所说的一样,是非常大的数据集.那么究竟有大多?真实的答案就是"如你所想的那么大"! 那么为什么会产生如此之大的数据集?因为当今的数据已经无所不在并且存在着巨大的回报:收集通信数据的RFID传感器,收集天气信息的传感器,移动设备给社交网站发送的GPRS数据包,图片视频,在线购物产生的交易记录,应有尽有!大数据是一个巨大的数据集,包含了任何数

Hadoop和大数据:60款顶级开源工具

虽然此文尽力做到全面,但难免遗漏,欢迎大家补充,点击文末右下角"写评论",分享你的观点. 说到处理大数据的工具,普通的开源解决方案(尤其是Apache Hadoop)堪称中流砥柱.弗雷斯特调研公司的分析师Mike Gualtieri最近预测,在接下来几年,"100%的大公司"会采用Hadoop.Market Research的一份报告预测,到2011年,Hadoop市场会以58%的年复合增长率(CAGR)高速增长:到2020年,市场产值会超过10亿美元.IBM更是非

大数据从业者应该知道的开源工具

前言 想要成为大数据工程师这些开源工具你要有所了解 一.Hadoop相关工具 1. Hadoop Apache的Hadoop项目已几乎与大数据划上了等号.它不断壮大起来,已成为一个完整的生态系统,众多开源工具面向高度扩展的分布式计算. 支持的操作系统:Windows.Linux和OS X. 相关链接:http://hadoop.apache.org 2. Ambari 作为Hadoop生态系统的一部分,这个Apache项目提供了基于Web的直观界面,可用于配置.管理和监控Hadoop集群.有些开

大数据平台常见开源工具有哪些?

大数据平台是对海量结构化.非结构化.半机构化数据进行采集.存储.计算.统计.分析处理的一系列技术平台.大数据平台处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据仓库工具无法处理完成的,其涉及的技术有分布式计算.高并发处理.高可用处理.集群.实时性计算等,汇集了当前IT领域热门流行的各类技术. 大数据平台常见的一些工具汇集 主要包含:语言工具类.数据采集工具.ETL工具.数据存储工具.分析计算.查询应用及运维监控工具等.以下对各工具作为简要的说明. 一语言工具类 1.Java编程技