Codeforces Codeforces Round #484 (Div. 2) E. Billiard

Codeforces Codeforces Round #484 (Div. 2) E. Billiard

题目连接:

http://codeforces.com/contest/982/problem/E

Description

Consider a billiard table of rectangular size $n \times m$ with four pockets. Let‘s introduce a coordinate system with the origin at the lower left corner (see the picture).

There is one ball at the point $(x, y)$ currently. Max comes to the table and strikes the ball. The ball starts moving along a line that is parallel to one of the axes or that makes a $45^{\circ}$ angle with them. We will assume that:

  1. the angles between the directions of the ball before and after a collision with a side are equal,
  2. the ball moves indefinitely long, it only stops when it falls into a pocket,
  3. the ball can be considered as a point, it falls into a pocket if and only if its coordinates coincide with one of the pockets,
  4. initially the ball is not in a pocket.

Note that the ball can move along some side, in this case the ball will just fall into the pocket at the end of the side.

Your task is to determine whether the ball will fall into a pocket eventually, and if yes, which of the four pockets it will be.

Sample Input

4 3 2 2 -1 1

Sample Output

0 0

题意

给定一个球和方向,问能不能在盒子里停下来

Giving a ball and vector, judge it will stop in the box or not

官方题解以及机器翻译。。:

如果您在平面上相对于其两侧对称地反射矩形,则球的新轨迹将更容易。线性轨迹如果是正确的。一个可能的解决方案是

  • 如果矢量与轴成90度角,则写入if-s。
  • 否则,转动场以使影响矢量变为(1,1)。
  • 写出球的直线运动方程: - 1·x + 1·y + C = 0。如果我们用球的初始位置代替,我们可以找到系数C.
  • 请注意,在平面的无限平铺中,可以以(k1·n,k2·m)的形式表示任何孔的坐标。
  • 用球的线的方程中的点的坐标代替。丢番图方程a·k1 + B·k2 = Cis。如果C |可以解决GCD(A,B)。否则,没有解决方案。
  • 在这个丢番图方程的所有解中,我们对正半轴上的最小值感兴趣。
  • 通过查找k1,k2可以很容易地得到相应口袋的坐标
  • 如果需要,将场转回。

If you symmetrically reflect a rectangle on the plane relative to its sides, the new trajectory of the ball will be much easier. Linear trajectory if be correct. One possible solution is:

  • If the vector is directed at an angle of 90 degrees to the axes, then write the if-s.
  • Otherwise, turn the field so that the impact vector becomes (1,?1).
  • Write the equation of the direct motion of the ball: ?–?1·x?+?1·y?+?C?=?0. If we substitute the initial position of the ball, we find the coefficient C.
  • Note that in the infinite tiling of the plane the coordinates of any holes representable in the form (k1·n,?k2·m).
  • Substitute the coordinates of the points in the equation of the line of the ball. The Diophantine equation a·k1?+?B·k2?=?Cis obtained. It is solvable if C?|?gcd(A,?B). Otherwise, there are no solutions.
  • Of all the solutions of this Diophantine equation, we are interested in the smallest on the positive half-axis.
  • By finding k1,?k2 it is easy to get the coordinates of the corresponding pocket
  • Rotate the field back if required.

代码

#include <bits/stdc++.h>

using namespace std;

long long x, y, xx, yy;
long long vx, vy;
long long fx, fy;
long long c;

long long ex_gcd(long long a, long long b, long long &xa, long long &ya) {
    if (!b) {
        xa = c;
        ya = 0;
        return a;
    }
    long long ret = ex_gcd(b, a % b, xa, ya);
    long long temp = xa;
    xa = ya;
    ya = temp - (a / b) * ya;
    return ret;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);
    cerr.tie(nullptr);

    cin >> x >> y >> xx >> yy >> vx >> vy;
    if (!vx) {
        if (xx == 0 || xx == x) {
            if (vy == 1) {
                cout << xx << " " << y;
            } else {
                cout << xx << " " << 0;
            }
        } else
            return 0 * puts("-1");
        return 0;
    }
    if (!vy) {
        if (yy == 0 || yy == y) {
            if (vx == 1) {
                cout << x << " " << yy;
            } else {
                cout << 0 << " " << yy;
            }
        } else
            return 0 * puts("-1");
        return 0;
    }

    if (vx == -1) fx = 1, xx = x - xx;
    if (vy == -1) fy = 1, yy = y - yy;

    c = xx - yy;
    if (c % __gcd(x, y))
        return 0 * puts("-1");
    c /= __gcd(x, y);
    long long m = y / __gcd(x, y);
    long long xxx, yyy;
    ex_gcd(x, y, xxx, yyy);
    xxx = (xxx % m + m - 1) % m + 1;
    yyy = -(yy - xx + x * xxx) / y;
    long long ansn = x, ansm = y;
    if (xxx % 2 == 0) ansn = x - ansn;
    if (yyy % 2 == 0) ansm = y - ansm;
    if (fx) ansn = x - ansn;
    if (fy) ansm = y - ansm;
    cout << ansn << " " << ansm;
}

原文地址:https://www.cnblogs.com/EDGsheryl/p/9175904.html

时间: 2024-10-07 18:00:56

Codeforces Codeforces Round #484 (Div. 2) E. Billiard的相关文章

Codeforces Round #484 (Div. 2) B. Bus of Characters(markdowm版)

Codeforces Round #484 (Div. 2) B. Bus of Characters B. Bus of Characters time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output In the Bus of Characters there are nn rows of seat, each having 22

Codeforces Codeforces Round #484 (Div. 2) D. Shark

Codeforces Codeforces Round #484 (Div. 2) D. Shark 题目连接: http://codeforces.com/contest/982/problem/D Description For long time scientists study the behavior of sharks. Sharks, as many other species, alternate short movements in a certain location and

Codeforces Beta Round #91 (Div. 1 Only) E. Lucky Array

E. Lucky Array Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467are not. Petya has an arra

Codeforces Beta Round #85 (Div. 1 Only) C (状态压缩或是数学?)

C. Petya and Spiders Little Petya loves training spiders. Petya has a board n × m in size. Each cell of the board initially has a spider sitting on it. After one second Petya chooses a certain action for each spider, and all of them humbly perform it

暴力/DP Codeforces Beta Round #22 (Div. 2 Only) B. Bargaining Table

题目传送门 1 /* 2 题意:求最大矩形(全0)的面积 3 暴力/dp:每对一个0查看它左下的最大矩形面积,更新ans 4 注意:是字符串,没用空格,好事多磨,WA了多少次才发现:( 5 详细解释:http://www.cnblogs.com/cszlg/p/3217478.html 6 */ 7 #include <cstdio> 8 #include <algorithm> 9 #include <cstring> 10 #include <cmath>

Codeforces Beta Round #6 (Div. 2 Only) B. President&#39;s Office

题目大意 给出一个n*m的矩阵 ,描述桌子的布局.总统的桌子和他的副手的桌子相邻,每一个人的桌子有它独有的颜色.问总统有多少个副手. 解题思路 搜出总统的桌子在矩阵中的边界后判断边界外的其它颜色桌子的数量. 题目代码 #include <set> #include <map> #include <queue> #include <math.h> #include <vector> #include <string> #include

图论/暴力 Codeforces Beta Round #94 (Div. 2 Only) B. Students and Shoelaces

题目传送门 1 /* 2 图论/暴力:这是个连通的问题,每一次把所有度数为1的砍掉,把连接的点再砍掉,总之很神奇,不懂:) 3 */ 4 #include <cstdio> 5 #include <cstring> 6 #include <algorithm> 7 #include <cmath> 8 using namespace std; 9 10 const int MAXN = 1e2 + 10; 11 const int INF = 0x3f3f3

BFS Codeforces Beta Round #94 (Div. 2 Only) C. Statues

题目传送门 1 /* 2 BFS:三维BFS,坐标再加上步数,能走一个点当这个地方在步数内不能落到.因为雕像最多8步就会全部下落, 3 只要撑过这个时间就能win,否则lose 4 */ 5 #include <cstdio> 6 #include <algorithm> 7 #include <queue> 8 #include <vector> 9 #include <cstring> 10 using namespace std; 11 1

水题 Codeforces Beta Round #70 (Div. 2) A. Haiku

题目传送门 1 /* 2 水题:三个字符串判断每个是否有相应的元音字母,YES/NO 3 下午网速巨慢:( 4 */ 5 #include <cstdio> 6 #include <cstring> 7 #include <string> 8 #include <iostream> 9 #include <algorithm> 10 #include <cmath> 11 using namespace std; 12 13 cons