前世今生:Hive、Shark、spark SQL

Hive (http://en.wikipedia.org/wiki/Apache_Hive )(非严格的原文顺序翻译)


 Apache Hive是一个构建在Hadoop上的数据仓库框架,它提供数据的概要信息、查询和分析功能。最早是Facebook开发的,现在也被像Netflix这样的公司使用。Amazon维护了一个为自己定制的分支。

  Hive提供了一个类SQL的语音--HiveQL,它将对关系数据库的模式操作转换为Hadoop的map/reduce、Apache Tez和Spark 执行引擎所支持的操作。以上的三种执行引擎都可以在YARN框架下运行。为了加速执行,它添加了indexes特性,包括bitmap indexes。

其他特性:

  • 加速用的索引功能(有什么特别的?)
  • 不同的存储类型文件,例如plain text, RCFileHBase, ORC, and others.
  • 元数据保存在关系数据库中,默认是(Apache Derbydatabase),可替换为Mysql等;
  • 可对hadoop生态系统的压缩数据操作,支持多种算法:gzipbzip2snappy, etc.
  • 内置UDF(自定义函数)
  • 类SQL查询,是转换为Mapreduce执行的。

HiveQL不完全兼容SQL-92标准:

1)它额外支持多行插入功能和通过select创建表功能;

2)仅支持基本的索引功能;

3)不支持事务和物化视图功能;

4) 仅支持有限的子查询功能

在Hive内部,HiveQL语句通过编译器转换为DAG(有向无环图)关系的mapReduce,然后提交给hadoop执行;

相关项目:

Shark https://github.com/amplab/shark/wiki/Shark-User-Guide  )


Shark是一个为spark设计的大规模数据仓库系统,它与Hive兼容。。。balabala

Shark, Spark SQL, Hive on Spark, and the future of SQL on Spark


  Shark将停止开发,而Spark SQL将取代并兼容Shark 0.9的所有功能,并提供额外的功能。

Hive的缺点:

  • 性能不佳;
  • 为了执行交互查询,需要部署昂贵且私有的数据仓库,且这些数据仓库(EDWs )需要严格而冗长的ETL处理。

Hive与EDWs的显著性能差异导致了业界怀疑通用数据处理引擎在查询处理上有与生俱来的缺陷。许多人相信交互性SQL需要昂贵的专业查询系统(相对于通用数据引擎。)(如EDWs)。Shark是其中一个最早建立在Hadoop系统上的交互式SQL工具,且是唯一一个建立在spark上的。Shark证明Hive的缺陷不是固有的,像spark这样的通用数据引擎能同时做到:像EDW那样快,像Hive/MapReduce那样大规模。

从Shark 到 Spark SQL

Shark建立在Hive的代码基础上,并通过将Hive的部分物理执行计划交换出来(by swapping out the physical execution engine part of Hive)。这个方法使得Shark的用户可以加速Hive的查询,但是Shark继承了Hive的大且复杂的代码基线使得Shark很难优化和维护。随着我们遇到了性能优化的上限,以及集成SQL的一些复杂的分析功能,我们发现Hive那位MapReduce设计的框架限制了Shark的发展。

基于上述的理由我们停止Shark这个独立项目的开发,而转向spark SQL。Spark SQL是作为spark一个组件,充分利用spark的有事从头开始设计的。这种新的设计使我们数据更快,且最终交付给用户一个体验更好且更强大的工具。

对于SQL用户,spark SQL提供很好的性能并且与Shark、Hive兼容。(性能提高一个数量级)。

对spark用户,spark SQL提供了对结构化数据的简便( narrow-waist)操作。那是真正的为高级的数据分析统一了SQL(结构化查询语言)与命令式语言的混合使用。

对开源的高手来说,Spark SQL提供了新颖而优雅的构建查询计划的方法。人们可以很容易添加新的优化到这个框架内。我们也被开源贡献者的热情所感动。。。balabala

Hive on Spark Project (HIVE-7292)

说大家都希望Hive尽快支持Hive on spark功能。。以及未来多么美好。。balabala

来自为知笔记(Wiz)

时间: 2024-10-27 11:34:10

前世今生:Hive、Shark、spark SQL的相关文章

Spark SQL Hive Support Demo

前提: 1.spark1.0的包编译时指定支持hive:./make-distribution.sh --hadoop 2.3.0-cdh5.0.0 --with-yarn --with-hive --tgz 2.安装完spark1.0: 3.安装与hadoop对应的CDH版本的hive: Spark SQL 支持Hive案例: 1.将hive-site.xml配置文件拷贝到$SPARK_HOME/conf下 hive-site.xml文件内容形如: <?xml version="1.0&

spark SQL概述

Spark SQL是什么? 何为结构化数据 sparkSQL与spark Core的关系 Spark SQL的前世今生:由Shark发展而来 Spark SQL的前世今生:可以追溯到Hive Spark SQL的前世今生:Hive 到Shark(在Hive上做改进) Spark SQL的前世今生:Shark 到Spark SQL(彻底摆脱但是兼容Hive) Spark SQL的前世今生:Hive 到Hive on Spark

10.spark sql之快速入门

前世今生 Hive&Shark ??随着大数据时代的来临,Hadoop风靡一时.为了使熟悉RDBMS但又不理解MapReduce的技术人员快速进行大数据开发,Hive应运而生.Hive是当时唯一运行在Hadoop上的SQL-on-Hadoop工具. ??但是MapReduce计算过程中大量的中间磁盘落地过程消耗了大量的I/O,降低的运行效率.为了提高SQL-on-Hadoop的效率,大量的SQL-on-Hadoop工具开始产生,其中表现较为突出的是: MapR的Drill Cloudera的Im

Spark1.1.0 Spark SQL Programming Guide

Spark SQL Programming Guide Overview Getting Started Data Sources RDDs Inferring the Schema Using Reflection Programmatically Specifying the Schema Parquet Files Loading Data Programmatically Configuration JSON Datasets Hive Tables Performance Tuning

Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio

Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南

Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel

CK2255-以慕课网日志分析为例 进入大数据 Spark SQL 的世界

新年伊始,学习要趁早,点滴记录,学习就是进步! 随笔背景:在很多时候,很多入门不久的朋友都会问我:我是从其他语言转到程序开发的,有没有一些基础性的资料给我们学习学习呢,你的框架感觉一下太大了,希望有个循序渐进的教程或者视频来学习就好了.对于学习有困难不知道如何提升自己可以加扣:1225462853  获取资料. 下载地址:https://pan.baidu.com/s/1hsU5EIS 以慕课网日志分析为例 进入大数据 Spark SQL 的世界 本课程以"慕课网日志分析"这一大数据应

关于hive on spark会话的共享状态

spark sql中有一个类: org.apache.spark.sql.internal.SharedState 它是用来做: 1.元数据地址管理(warehousePath) 2.查询结果缓存管理(cacheManager) 3.程序中的执行状态和metrics的监控(statusStore) 4.默认元数据库的目录管理(externalCatalog) 5.全局视图管理(主要是防止元数据库中存在重复)(globalTempViewManager) 1:首先介绍元数据地址管理(warehou

Spark SQL, DataFrames and Datasets 指南

概述 Spark SQL 是 Spark 处理结构化数据的模块; 与基础的 Spark RDD API 不同, Spark SQL 提供的接口提供给 Spark 更多的关于数据和执行计算的结; 内在的, Spark SQL 使用这些额外的信息去执行额外的优化; 这里有几种包括 SQL 和 Datasets API 在内的与 Spark SQL 交互的方法; 当计算结果使用相同的执行引擎, 独立于你使用的表达计算的 API/语言; 这种统一意味着开发者可以依据哪种 APIs 对于给定的表达式提供了