HDU 5735 Born Slippy(拆值DP+位运算)

【题目链接】 http://acm.hdu.edu.cn/showproblem.php?pid=5735

【题目大意】

  给出一棵树,树上每个节点都有一个权值w,w不超过216,树的根为1,从一个点往根的方向走,可以得到他的祖先序列,现在需要从v1点的祖先序列中挑选出一定数量的点,组成数列v1,v2,v3……vm,要求vi是vi-1的祖先,求dp[v1]=max(dp[vi]+(w[v1] opt w[vi])),opt是一种运算,在题目中可为xor,or或者and,最后求出ans=sum_{i=1}^{n}(i*(w[i]+dp[i]))

【题解】

  对于这道题,我们首先考虑它的简化版本,在一个一维数组上求dp[i]=max(dp[j]+(w[i] opt w[j])) (j<i),显然枚举前缀的O(n2)的用脚趾头都能想出来的算法,出题人是不会给过的。那么我们观察一下题目,发现一个很奇巧的东西,w的值不超过216,难道说每次计算以w结尾的dp最大值,然后枚举二进制?一次6w多的计算量,明显也没有产生太大的优化,顺着这个思路下去,这道题采用了一种拆值DP的神奇的方式,

  dp[i]=max(dp[j]+([w[i]前八位]opt[w[j]前八位])<<8+[w[i]后八位]opt[w[j]后八位])

  记dp[A][B]=以前八位为A结尾,后八位以B结尾的dp值,于是就可以发现:

dp[A][B]=max(dp[i][B]+([w[i]前八位]opt[w[A]前八位])<<8)

  那么,在知道了后八位的情况下,前八位就能轻松dp,既然这样,那我们就在计算完每个节点之后,预处理后八位的dp值:

dp[A][i]=max(dp[A][j]+([w[i]后八位]opt[w[j]后八位]))

  这样子每次转移所需要的复杂度就只有28,可以接受。顺利完成。

  而这道题所处理的却是树上的问题,那么在每条链上DP的过程中预处理祖先节点dp数组,按照上述方法计算子节点的dp值即可,而对于不同的子节点,dp数组备份,然后回溯即可。

【代码】

#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std;
typedef unsigned int UI;
const int N=65540,mod=1e9+7;
UI T,n,i,w[N],nxt[N],x,f[256][256],tmp[N][256],v[256],ans;
vector<UI>g[N];
char op[5];
UI opt(UI a,UI b){
    if(op[0]==‘A‘)return a&b;
    if(op[0]==‘O‘)return a|b;
    if(op[0]==‘X‘)return a^b;
}
void dfs(UI x){
    UI dp=0,A=w[x]>>8,B=w[x]&255;
    for(int i=0;i<256;i++)if(v[i])dp=max(dp,f[i][B]+(opt(A,i)<<8));
    ans=(1LL*x*(dp+w[x])+ans)%mod;
    for(v[A]++,i=0;i<256;i++)tmp[x][i]=f[A][i],f[A][i]=max(f[A][i],opt(B,i)+dp);
    for(int i=0;i<g[x].size();i++)dfs(g[x][i]);
    for(v[A]--,i=0;i<256;i++)f[A][i]=tmp[x][i];
}
int main(){
    scanf("%d",&T);
    while(T--){
        scanf("%d %s",&n,op);
        for(int i=1;i<=n;i++)scanf("%d",&w[i]),g[i].clear();
        for(int i=2;i<=n;i++)scanf("%d",&x),g[x].push_back(i);
        ans=0; dfs(1);
        printf("%d\n",ans);
    }return 0;
}

  

时间: 2024-10-10 09:40:23

HDU 5735 Born Slippy(拆值DP+位运算)的相关文章

HDU - 5735 Born Slippy 思维 + dp(看题解)

HDU - 5735 感觉这个思路相当巧妙啊.. 考虑最普通的 dp[ i ] = max(dp[ j ] + w[ i ] opt w[ j ]), j 是 i 的祖先. 把(2 << 16) 分成前八位和后八位去优化最朴素的dp. 修改遍历后八位, 查询遍历前八位. #pragma GCC optimize(2) #pragma GCC optimize(3) #include<bits/stdc++.h> #define LL long long #define LD lon

HDU 5735 Born Slippy

看官方题解很详细了: 总结一下:递推式不难想到,但是每次求dp[x]需要枚举祖先,复杂度太高,需要优化. 题解的方法,可以使得复杂度降低到1<<24. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #include<

hdu 4336 Card Collector (概率dp+位运算 求期望)

题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2711    Accepted Submission(s): 1277Special Judge Problem Description In your childhood, do you crazy for collecting the beaut

基于DP+位运算的RMQ算法

来源:http://blog.csdn.net/y990041769/article/details/38405063 RMQ算法,是一个快速求区间最值的离线算法,预处理时间复杂度O(n*log(n)),查询O(1),所以是一个很快速的算法,当然这个问题用线段树同样能够解决. 问题:给出n个数ai,让你快速查询某个区间的的最值. 算法分类:DP+位运算 算法分析:这个算法就是基于DP和位运算符,我们用dp[i ][j]表示从第 i 位开始,到第 i + 2^j -1 位的最大值或者最小值. 那么

求集合中选一个数与当前值进行位运算的max

求集合中选一个数与当前值进行位运算的max 这是一个听来的神仙东西. 先确定一下值域把,大概\(2^{16}\),再大点也可以,但是这里就只是写写,所以无所谓啦. 我们先看看如果暴力求怎么做,位运算需要给定\(01/10,00,11\)的关系,总共\(8\)种. 如果是暴力的话,我们的方法有两种, 第一种是比较喜闻乐见的, 我们对于当前数\(x\),暴力计算所有存在的数\(a_i\)中,\(x\oplus a_i\)的最大值,这样的复杂度是\(O(2^{16})\)的. 另外一种也是不难考虑到的

HDU 2276 Kiki &amp; Little Kiki 2 (位运算+矩阵快速幂)

HDU 2276 Kiki & Little Kiki 2 (位运算+矩阵快速幂) ACM 题目地址:HDU 2276 Kiki & Little Kiki 2 题意: 一排灯,开关状态已知,每过一秒:第i个灯会根据刚才左边的那个灯的开关情况变化,如果左边是开的,它就会变化,如果是关的,就保持原来状态.问m秒后的状态. 第1个的左边是最后一个. 分析: 转移不好想啊... 变化是这样的: 原来 左边 变化 1 1 0 1 0 1 0 1 1 0 0 0 然后想到 (~原来)^(左边)=变化

HDU 5119 Happy Matt Friends(dp+位运算)

题意:给定n个数,从中分别取出0个,1个,2个...n个,并把他们异或起来,求大于m个总的取法. 思路:dp,背包思想,考虑第i个数,取或者不取,dp[i][j]表示在第i个数时,异或值为j的所有取法.dp[i][j] = dp[i - 1][j] + dp[i - 1][j ^ a[i]]); 其中dp[i - 1][j]表示不取第i个数,dp[i - 1][j & a[i]]表示取第i个数,由于40比较大,所以用滚动数组优化,后一个状态需要前一个来推导,而和前一个之前的所有的没有关系,所以之

hdu 4901 The Romantic Hero 计数dp,位计算

The Romantic Hero Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 1128    Accepted Submission(s): 469 Problem Description There is an old country and the king fell in love with a devil. The d

[poj 1185] 炮兵阵地 状压dp 位运算

Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图.在每一格平原地形上最多可以布置一支炮兵部队 (山地上不能够部署炮兵部队):一支炮兵部队在地图上的攻击范围如图中黑色区域所示: 如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格.图上其它白色网格均攻击