1157 2k进制数
2006年NOIP全国联赛提高组
时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
题目描述 Description
设r是个2k进制数,并满足以下条件:
(1)r至少是个2位的2k进制数。
(2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。
(3)将r转换为2进制数q后,则q的总位数不超过w。
在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。
问:满足上述条件的不同的r共有多少个?
我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2k进制数r。
例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:
2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。
3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。
所以,满足要求的r共有36个。
输入描述 Input Description
只有1行,为两个正整数,用一个空格隔开:
k W
输出描述 Output Description
共1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。
(提示:作为结果的正整数可能很大,但不会超过200位)
样例输入 Sample Input
3 7
样例输出 Sample Output
36
数据范围及提示 Data Size & Hint
/* F[i][j]表示以i开头的长度为j的有几个 F[i][j]=f[i+1][j-1]+f[i+2][j-1]+...+f[maxx][j-1] 但这样做会超时 观察到: f[i+1][j]=f[i+2][j-1]+...+f[maxx][j-1] F[i][j]=f[i+1][j-1]+f[i+1][j] */
/*90分超时代码*/ #include<iostream> #include<cstdio> #include<cstring> #define LL unsigned long long #define maxn 30010 using namespace std; int p,w,r,l,len=1; int a[maxn],f[15]; struct node { int l,a[210]; }g[520][610],ans; void add(node &x,node &y) { int l1=x.l,l2=y.l,l3=1,i,j,k; LL c[210]={0}; while(l3<=l1||l3<=l2) { c[l3]+=(x.a[l3]+y.a[l3]); c[l3+1]+=c[l3]/1000000000; c[l3]%=1000000000; l3++; } while(l3>1&&c[l3]==0)l3--; x.l=l3; for(i=1;i<=l3;i++) x.a[i]=c[i]; } void prepare() { LL i,j,k; f[0]=1; for(LL i=1;i<=9;i++) f[i]=f[i-1]<<1; for(i=1;i<f[p];i++) { int q=f[p]-i-1; while(q>0) { g[i][2].l++; g[i][2].a[g[i][2].l]=q%1000000000; q=q/1000000000; } } for(j=3;j<=l+1;j++) for(i=1;i<f[p];i++) for(k=i+1;k<f[p];k++) add(g[i][j],g[k][j-1]); } int main() { LL i,j,k; scanf("%d%d",&p,&w); r=w%p; l=w/p; prepare(); for(i=1;i<=l;i++) a[i]=f[p]; a[l+1]=f[r]; for(j=2;j<=l+1;j++) for(i=1;i<a[j];i++) add(ans,g[i][j]); printf("%d",ans.a[ans.l]); for(i=ans.l-1;i>=1;i--) printf("%09d",ans.a[i]); cout<<endl; return 0; }
/*AC代码*/#include<iostream> #include<cstdio> #include<cstring> #define LL unsigned long long #define maxn 30010 using namespace std; int p,w,r,l,len=1; int a[maxn],f[15]; struct node { int l,a[210]; }g[520][610],ans; void add(node &x,node &y) { int l1=x.l,l2=y.l,l3=1,i,j,k; LL c[210]={0}; while(l3<=l1||l3<=l2) { c[l3]+=(x.a[l3]+y.a[l3]); c[l3+1]+=c[l3]/1000000000; c[l3]%=1000000000; l3++; } while(l3>1&&c[l3]==0)l3--; x.l=l3; for(i=1;i<=l3;i++) x.a[i]=c[i]; } void prepare() { LL i,j,k; f[0]=1; for(LL i=1;i<=9;i++) f[i]=f[i-1]<<1; for(i=1;i<f[p];i++) { int q=f[p]-i-1; while(q>0) { g[i][2].l++; g[i][2].a[g[i][2].l]=q%1000000000; q=q/1000000000; } } for(j=3;j<=l+1;j++) for(i=f[p]-1;i>=1;i--) { add(g[i][j],g[i+1][j]); add(g[i][j],g[i+1][j-1]); } } int main() { LL i,j,k; scanf("%d%d",&p,&w); r=w%p; l=w/p; prepare(); for(i=1;i<=l;i++) a[i]=f[p]; a[l+1]=f[r]; for(j=2;j<=l+1;j++) for(i=1;i<a[j];i++) add(ans,g[i][j]); printf("%d",ans.a[ans.l]); for(i=ans.l-1;i>=1;i--) printf("%09d",ans.a[i]); cout<<endl; return 0; }