欧拉函数+素数筛

欧拉函数,就是欧拉发现的一个关于求素数的的公式,然后我们编个函数实现这个公式。

欧拉发现求小于等于n的正整数中有多少个数与n互质可以用这个公式:

euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素因数,x是不为0的整数。euler(1)=1(唯一和1互质的数就是1本身)。

欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。

其实直接看模板加注解想想就能看懂

筛选的原理就是找出n的因子,剔除含有n的因子的数,即剔除与n不互质的数

既然是求与n互质的个数,那我们可以直接筛选,看模板:

int phi(int n)

{    int res=n;                  /假设现有n个数与n互质,开始筛选剔除

for(i=2;i*i<=n;i++)

{    if(n%i==0)                /若这个数是n的因子,减去n以下含有这个因子的数个数,假设n=8,小于等于8,2为公因子的有8/2=4个

{   res-=res/i;

while(n%i==0)            /将n不断整除这个因子

n=n/i;

}

}

if(n>1)             /若n大于1,则此时的n也是一个除1以外的因子

res-=res/n;

return res;

}

有时候还用到多个数的欧拉值,因此需要对1到n的数都求出欧拉值,就是打表。

将1到n的欧拉值求出并存储到数组,筛选法,代码:

void phi(int n)                         上边的看懂了,下边这个求多个数的也类似

{   for(int i=1;i<=n;i++)

p[i]=i;                   赋原值

for(int i=2;i<=n;i++)

if(p[i]==i)

{   for(int j=i;j<=n;j+=i)          筛选

p[j]=p[j]-p[j]/i;

}

}

素数筛:就是让你判断任意一个数是否为素数,若问一个求一个显然会超时,所以首先需要把素数都求出来,用筛选法求的,所以叫素数筛。

原理就是若一个数有除1和它本身以外的因子就将它标记不是素数,最后无标记的就是素数。

直接看代码加注解:

#include <iostream>

#include <cstring>

#define MAX 1000001

int flag[MAX];

int main()

{    memset(flag,0,sizeof(flag));

flag[1]=1;               /1代表不是素数,0代表是素数

for(int i=4;i<MAX;i+=2)

flag[i]=1;              /先将偶数先标记不是

for(int i=3;i*i<MAX;i+=2)

for(int j=i*i;j<MAX;j+=i)   /奇数的倍数标记不是

flag[j]=1;

int n;

while(cin>>n)

{   if(flag[n]==0)

cout<<"YES"<<endl;

else

cout<<"NO"<<endl;

}

}

素数筛常用于让你判断大量素数,或求大量素数,当然如果数目很少,就按常规判断就好了

时间: 2024-10-23 22:06:44

欧拉函数+素数筛的相关文章

【bzoj2401】陶陶的难题I “高精度”+欧拉函数+线性筛

题目描述 求 输入 第一行包含一个正整数T,表示有T组测试数据.接下来T<=10^5行,每行给出一个正整数N,N<=10^6. 输出 包含T行,依次给出对应的答案. 样例输入 7 1 10 100 1000 10000 100000 1000000 样例输出 1 2127 18446224 183011304660 1827127167830060 18269345553999897648 182690854273058293758232 题解 “高精度”+欧拉函数+线性筛 由于$i$和$j$

POJ 3126 Prime Path (bfs+欧拉线性素数筛)

Description The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. - It is a matter of security to change such things every now

Ligh OJ 1370 Party All the Time (欧拉函数 +素数打表)

1370 - Bi-shoe and Phi-shoe PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for

LightOJ Bi-shoe and Phi-shoe 1370【欧拉函数+素数打表】

1370 - Bi-shoe and Phi-shoe PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for

欧拉筛素数+求欧拉函数

线性筛法 prime记录素数,num_prime素数下标 它们保证每个合数只会被它的最小质因数筛去 a[0]=a[1]=1; for(int i=2;i<=n;i++) { if(!a[i]) prime[num_prime++]=i; for(int j=0;j<num_prime&&i*prime[j]<=n;j++) { a[i*prime[j]]=1; if(!(i%prime[j])) break; } } } 欧拉函数 是 积性函数:对于任意互质的整数a和b有

数论线性筛总结 (素数筛,欧拉函数筛,莫比乌斯函数筛,前n个数的约数个数筛)

线性筛 线性筛在数论中起着至关重要的作用,可以大大降低求解一些问题的时间复杂度,使用线性筛有个前提(除了素数筛)所求函数必须是数论上定义的积性函数,即对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数,若a,b不互质也满足的话则称作完全积性函数,下面说明每个筛子是怎么筛的. 最基础的是素数筛,其它三个筛都是以素数筛为前提 素数筛 void get_prime() { int pnum = 0; for(int i = 2;

线性筛素数、欧拉函数

判断一个数n是否是素数,众所周知可以用O(sqrt(n))的方法. 但是如果要求很多个数,这个方法就不太好了.(比如所有小于n的数,复杂度就是O(n1.5).) 埃拉托斯特尼筛法,大家都听说过.从2到n,去掉每个数的倍数,剩下来的就是质数. 不过这个方法会重复删除,比如6是2.3的倍数,会被删2次,因子越多,删的次数就越多. 改进之后的线性筛保证每个数只被最小的质因子删,所以是O(n)的. #include<cstdio> #include<cstring> #define MAX

[数论]欧拉函数&素数筛

一.欧拉函数 欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示. 通式: 其中p1, p2--pn为x的所有质因数,x是不为0的整数. 比如x=12,拆成质因数为12=2*2*3, 12以内有1/2的数是2的倍数,那么有1-1/2的数不是2的倍数(1,3,5,7,9,11), 这6个数里又有1/3的数是3的倍数, 只剩下(1 - 1/2 - 1/3)的数既不是2的倍数,也不是3的倍数(1,5,7,11). 这样剩下的12*(1 - 1/2 - 1/3)=4,即4个数与12互质,所以

【模版】线性筛(素数,欧拉函数,莫比乌斯函数)

线性筛: 线性筛是一种比较实用的筛法,它与数论中的(完全)积性函数密切相关: (完全)积性函数的定义:对于两个整数 \(x_1\) 和 \(x_2\) ,若有函数\(f(x)\)满足:\(f(x_1x_2)=f(x_1)f(x_2)\),我们称\(f(x)\)为完全积性函数:特殊的:若 \(x_1\) 和 \(x_2\) 一定为两个互质的正整数,我们称\(f(x)\)为积性函数! 而线性筛就是利用了这一性质,将\(f(x)\)用且只用\(x\)最小的那个质因子利用\(f(x_1x_2)=f(x_