Graham算法模板

Graham算法模板
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 using namespace std;
 7 typedef long long ll;
 8 const int maxn=1100;
 9 const double pi=acos(-1.0);
10 struct node{
11     double x,y;
12 }p[maxn],a[maxn];
13 int n,tot;
14
15 //算距离
16 double dis(node a, node b){
17     return hypot(a.x-b.x,a.y-b.y);
18 }
19
20 //return 正:p2在向量p0p1的左侧;return 负:p2在向量p0p1的右侧;return 0:三点共线
21 double multi(node p0,node p1,node p2){
22     return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
23 }
24 //极角排序:根据坐标系内每一个点与x轴所成的角,逆时针比较,按照角度从小到大排序
25 int cmp(node a, node b){
26     int x=multi(a,b,p[0]);
27     if( x>0 || (x==0&& dis(a,p[0])<dis(b,p[0]))) return 1;
28     return 0;
29 }
30
31 void Graham(){
32     int k=0;
33     for(int i=1;i<n;i++){
34         if( p[i].y<p[k].y || (p[i].y==p[k].y&&p[i].x<p[k].x)) k=i;
35     }
36     swap(p[0],p[k]);
37     sort(p+1,p+n,cmp);
38     tot=2;
39     a[0]=p[0];
40     a[1]=p[1];
41     for(int i=2;i<n;i++){
42         while( tot>1 && multi(p[i],a[tot-1],a[tot-2])>=0 ){//a[tot-2]在p[i]a[tot-1]的左侧或三点共线,则p[i]在a[tot-2]a[tot-1]的右侧,则a[tot-1]不是极点
43             tot--;
44         }
45         a[tot++]=p[i];
46     }
47 }
48
49 int main()
50 {
51     int t;
52     scanf("%d",&t);
53     while( t-- ){
54         double r;
55         scanf("%d%lf",&n,&r);
56         for(int i=0;i<n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
57         Graham();
58     }
59     return 0;
60 }
 

原文地址:https://www.cnblogs.com/wsy107316/p/12298258.html

时间: 2024-10-01 10:50:56

Graham算法模板的相关文章

tarjan算法模板

var {left表示点 root 没离开栈 vis表示点 root 有没有被访问过} i,n,m,now,time,color,top:longint; v:array[0..10001] of record start:longint;end; e:array[0..100001] of record y,next:longint;end; dfn,low,stack,encolor:array[0..10001] of longint; vis,left:array[0..10001] o

prim算法模板

var g:array[1..10,1..10] of longint; d:array[1..10] of longint; f:array[1..10] of boolean; procedure prim; var i,j,k,min:longint; begin fillchar(g,sizeof(g),0); fillchar(f,sizeof(f),0); for i:=1 to n do d[i]:=g[1,i]; f[1]:=true; for i:=2 to n do begi

bellman-ford算法模板

有SPFA模板,bellman-ford模板显然是多余的. var e:array[1..maxe]of record a,b,w:longint;end; { 距源点s距离 } dis:array[1..maxn]of longint; { 前驱 } pre:array[1..maxn]of longint; m,n,s:longint; procedure relax(u,v,w:longint); begin if dis[u]+w<dis[v] then begin dis[v]:=di

Floyd判最小环算法模板

算法思想:如果存在最小环,会在编号最大的点u更新最短路径前找到这个环,发现的方法是,更新最短路径前,遍历i,j点对,一定会发现某对i到j的最短路径长度dis[i][j]+mp[j][u]+mp[u][i] != INF,这时i,j是图中挨着u的两个点,因为在之前最短路更新过程中,u没有参与更新,所以dis[i][j]所表示的路径中不会出现u,如果成立,则一定是一个环.用Floyd算法来实现.但是对于负环此算法失效,因为有负环时,dis[i][j]已经不能保证i到j的路径上不会经过同一个点多次了.

hdu 1711 KMP算法模板题

题意:给你两个串,问你第二个串是从第一个串的什么位置開始全然匹配的? kmp裸题,复杂度O(n+m). 当一个字符串以0为起始下标时.next[i]能够描写叙述为"不为自身的最大首尾反复子串长度". 当发生失配的情况下,j的新值next[j]取决于模式串中T[0 ~ j-1]中前缀和后缀相等部分的长度, 而且next[j]恰好等于这个最大长度. 防止超时.注意一些细节.. 另外:尽量少用strlen.变量记录下来使用比較好,用字符数组而不用string //KMP算法模板题 //hdu

HDU 2544 最短路(我的dijkstra算法模板、SPAFA算法模板)

思路:这道题是基础的最短路径算法,可以拿来试一下自己对3种方法的理解 dijkstra主要是从第一个点开始枚举,每次枚举出当当前最小的路径,然后再以那最小的路径点为起点,求出它到其它未标记点的最短距离 bellman-ford 算法则是假设有向网中有n 个顶点.且不存在负权值回路,从顶点v1 和到顶点v2 如果存在最短路径,则此路径最多有n-1 条边.这是因为如果路径上的边数超过了n-1 条时,必然会重复经过一个顶点,形成回路:而如果这个回路的权值总和为非负时,完全可以去掉这个回路,使得v1到v

kruskal 算法模板

http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2896 #include <stdio.h> #include <string.h> #include <stdlib.h> struct node { int u,v,w; }q[200001]; int bin[50001]; int n,m,ans; int cmp(const void *a,const void

Floyd算法模板

Floyd可以求出任意两点间的最短距离,代码也相对简单,对于稀疏图来说效率也还是不错的,但由于三个for循环导致时间复杂度较高,不适合稠密图. Floyd算法模板(精简版): void Floyd() { int dist[maxn][maxn]; // dist存储i到j的最短距离 for(int k = 1; k <= n; k++) for(int i = 1;i <= n; i++) for(int j = 1; j <= n; j++) if(dist[i][k] + dist

割点算法模板(Cut-vertex)

下面是求割點的模板,還有cut_vertex_num[]數組(array)記錄了哪些是割點 Int cut_vertex_num[]; void dfs(int cur,int pa) { int child=0,flag=0,i; low[cur]=dfn[cur]=++depth; for(i=0;i<adj[cur].size();i++) { int next=adj[cur][i]; if(!dfn[next]) //若未访问过 { child++; dfs(next,cur); lo