PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval

from: Dacheng Tao 悉尼大学

PROBLEM:

time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data.

Two challenging:

1. it requires a compact representation of the raw time series, which can explicitly encode the temporal dynamics as well as the correlations (interactions) between different pairs of time series.

2. 查询相似结果的快速性和准确性。

Compact representation: temporal dynamics + correlations

INTRODUCTION:

问题定义: given the current multivariate time series segment, i.e., a slice of multivariate time series which lasts for a short period of time, we aim to find its most similar time series segments in the historical data (or database).

A supervised multivariate time series retrieval problem. label information is available in historical data.

other methods: discrete Fourier transform; discrete wavelet transform; piecewise aggregate approximation; 但是这些方法仅仅针对univariate time series representation and ignore the correlations between different pairs.

?? 不同序列间的相关性也要compact?? 感觉没有这么做的啊?我明白了,由于是一个窗口内的multivariate time series, 需要衡量他们之间的correlation.

time serie作为一个独立的个体,如果想研究他们之间的correlations:

1. time series ----> compact representation -----> correlations

2. time series ----> correlation -----> compact representation

To speed up the expensive similarity search。

purpose: multivariate time series retrieval.

input: a raw multivariate time series segment

steps:

  1. employ lstm units to encode the temporal dynamics
  2. use cnn to encode the correlations between different pairs of ts
  3. generated two separate feature vectors from the first two steps.
  4. two separate feature vectors ----> a joint binary embedding
  5. calculate the similarity between two multivariate ts segments in Hamming space.
  6. r-th root ranking loss to train the disciplined embedding functions.

DEEP r-TH ROOT OF RANK SUPERVISED JOINT BINARY EMBEDDING

1. multivariate time series ----> lstm -----> the last hidden state ht

2. multivariate time series ---> correlation matrix -----> cnn ------> fully connected layer, l

3. joint binary embedding: y = [ht, l]; hash function/ embedding ----> Hv

4. 相比于pairwise similarities,我们使用了segment similarities in the form of triplets. {(Xq,Xi,Xj)}

yq: a query segment, yi: similar segment; yj: dissimilar segment;

就我目前看来,只是根据r-th ranking loss进行了训练,输入是{(Xq,Xi,Xj)}。但是最终如何检索的,还是不知道。

EXPERIMENTS

To measure the effectiveness of various binary embedding techniques for multivariate time series retrieval, we consider three evaluation metrics, i.e., Mean Average Precision (MAP), precision at top-k positions ([email protected]), and recall at top-k positions ([email protected]).

结果看起来很不错。

SUPPLEMENTARY KNOWLEDGE:

1. hamming distance: 是两个字符串对应位置的不同字符的个数。

例如:

  • 10111011001001之间的汉明距离是2。
  • 21438962233796之间的汉明距离是3。
  • "toned"与"roses"之间的汉明距离是3。

2. triplet loss

Triplet loss is a loss function for artificial neural networks where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input. The distance from the baseline (anchor) input to the positive (truthy) input is minimized, and the distance from the baseline (anchor) input to the negative (falsy) input is maximized.[1][2]

原文地址:https://www.cnblogs.com/dulun/p/12258184.html

时间: 2024-11-09 04:43:01

PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval的相关文章

PP: Deep clustering based on a mixture of autoencoders

Problem: clustering A clustering network transforms the data into another space and then selects one of the clusters. Next, the autoencoder associated with this cluster is used to reconstruct the data-point. Introduction: traditional method: data----

HDU 3966(树链剖分+点修改+点查询)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3966 题目大意:营地的分布成树型.每个营地都有一些人,每次修改修改一条链上的所有营地的人数,每次查询单个点. 解题思路: 树链剖分基础题. 维护一个sum. 注意轻链修改时,点修改和边修改的不同. 由于树的结构与线段树点的顺序不太相同,因此需要做一个映射数组rank.故在线段树Build的时候,权值是camp[rank[l]],rank这步的映射在dfs2的时候完成,rank[w[u]]=u; Qu

Awesome Deep Vision

Awesome Deep Vision  A curated list of deep learning resources for computer vision, inspired by awesome-php and awesome-computer-vision. Maintainers - Jiwon Kim, Heesoo Myeong, Myungsub Choi, Jung Kwon Lee, Taeksoo Kim We are looking for a maintainer

Install R & RStudio for Ubuntu

Install R r-project.org official source to install the latest R system. add R source   sudo vi /etc/apt/sources.list # append below line to end of sources.list # you can view mirror at http://cran.r-project.org/mirrors.html deb http://ftp.ctex.org/mi

需求:有个文件"pp.txt",判断里面是否包含"李四"的键,如果有把他改成"100"

package cn.idcast4; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.Reader; import java.io.Writer; import java.util.Properties; import java.util.Set; /* * 需求:有个文件"

A1066. Root of AVL Tree (25)

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illust

pat1012. The Best Rank (25)

1012. The Best Rank (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue To evaluate the performance of our first year CS majored students, we consider their grades of three courses only: C - C Programming Language, M - Mathematic

Android 二:root 手机的原理

前面讲如何利用adb 命令获取root权限,是基于手机已经被root过.如果手机,还没被root,则可用一下方法root 转载:http://www.juapk.com/thread-2000-1-1.html 轻描淡写编辑 一. 概述本文介绍了android中获取root权限的方法以及原理,让大家对android玩家中常说的“越狱”有一个更深层次的认识. 二. Root的介绍1.       Root 的目的可以让我们拥有掌控手机系统的权限,比如删除一些system/app下面的无用软件,更换

PAT1066. Root of AVL Tree

An AVL tree is a self-balancing binary search tree.  In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.  Figures 1-4 illu