Golang内存对齐

如何得到一个对象所占内存大小?

fmt.Println(unsafe.Sizeof(int64(0))) // "8"

type SizeOfA struct {
    A int
}
unsafe.Sizeof(SizeOfA{0}) // 8

type SizeOfC struct {
    A byte  // 1字节
    C int32 // 4字节
}
unsafe.Sizeof(SizeOfC{0, 0})    // 8
unsafe.Alignof(SizeOfC{0, 0}) // 4
结构体中A byte占1字节,C int32占4字节. SizeOfC占8字节

内存对齐:

为何会有内存对齐?

1.并不是所有硬件平台都能访问任意地址上的任意数据。

2.性能原因 访问未对齐的内存,处理器需要做两次内存访问,而对齐的内存只需访问一次。
上面代码SizeOfC中元素一共5个字节,而实际结构体占8字节
是因为这个结构体的对齐倍数Alignof(SizeOfC) = 4.也就是说,结构体占的实际大小必须是4的倍数,也就是8字节。

type SizeOfD struct {
    A byte
    B [3]int32
}
unsafe.Sizeof(SizeOfD{})   // 16
unsafe.Alignof(SizeOfD{})  // 4

Alignof返回的对齐数是结构体中单位基本类型所占的内存数,不超过8,如果元素是数组那么取数组元素类型所占的内存值而不是整个数组的值。

如图为SizeofD结构体变量的内存布局:

type SizeOfE struct {
    A byte  // 1
    B int64 // 8
    C byte  // 1
}
unsafe.Sizeof(SizeOfE{})    // 24
unsafe.Alignof(SizeOfE{}) // 8

SizeOfE中,元素的大小分别为1,8,1,但是实际结构体占24字节,远超元素实际大小,因为内存对齐原因,最开始分配的8字节中包含了1字节的A,剩余的7字节不足以放下B,又为B分配了8字节,剩余的C独占再分配的8字节。

如图为SizeofE结构体变量的内存布局:

type SizeOfF struct {
    A byte  // 1
    C byte  // 1
    B int64 // 8
}
unsafe.Sizeof(SizeOfF{})    // 16
unsafe.Alignof(SizeOfF{}) // 8

换一种写法,把A,C放到上面,B放到下面。这时SizeOfE占用的内存变为了16字节。因为首先分配的8字节足以放下A和C,省去了8字节的空间。
上面一个结构体中元素的不同顺序足以导致内存分配的巨大差异。前一种写法产生了很多的内存空洞,导致结构体不够紧凑,造成内存浪费。

如图为SizeofF结构体变量的内存布局:

下面我们来看一下结构体中元素的内存布局:

unsafe.Offsetof:返回结构体中元素所在内存的偏移量

type SizeOfH struct {
    A byte
    C int16
    B int64
    D int32
}
unsafe.Offsetof(SizeOfH{}.A) // 0
unsafe.Offsetof(SizeOfH{}.C) // 2
unsafe.Offsetof(SizeOfH{}.B) // 8
unsafe.Offsetof(SizeOfH{}.D) // 16

下图为SizeOfH 内存布局图:

蓝色区域是元素实际所占内存,灰色为内存空洞。

下面总结一下go语言中各种类型所占内存大小(x64环境下):

X64下1机器字节=8字节

Golang内置类型占用内存大小

总结一下:

从例子中可以看出,结构体中元素不同顺序的排列会导致内存分配的极大差异,不好的顺序会产生许多的内存空洞,造成大量内存浪费。
虽然这几个函数都在unsafe包中,但是他们并不是不安全的。在需要优化内存空间时这几个函数非常有用。

本文来自:简书

感谢作者:郭老汉

查看原文:Golang内存对齐

原文地址:https://www.cnblogs.com/-wenli/p/12681044.html

时间: 2024-08-29 23:45:38

Golang内存对齐的相关文章

内存对齐与自定义类型

一.内存对齐 (一).为什么会有内存对齐? 1.为了提高程序的性能,数据结构(尤其是栈)应该尽可能的在自然边界上对齐.原因是为了访问未对齐的内存,处理器需要进行两次访问,而访问对齐的内存,只需要一次就够了.这种方式称作"以空间换时间"在很多对时间复杂度有要求问题中,会采用这种方法. 2.内存对齐能够增加程序的可移植性,因为不是所有的平台都能随意的访问内存,有些平台只能在特定的地址处处读取内存. 一般情况下内存对齐是编译器的事情,我们不需要考虑,但有些问题还是需要考虑的,毕竟c/c++是

内存对齐,大端字节   序小端字节序验证

空结构体:对于空结构体,就是只有结构体这个模子,但里面却没有元素的结构体. 例: typedef struct student { }std: 这种空结构体的模子占一个字节,sizeof(std)=1. 柔性数组: 结构体中最后一个元素可以是一个大小未知的数组,称作柔性数组成员,规定柔性数组前面至少有一个元素. typedef struct student { int i; char arr[];     //柔性数组成员 }std: sizeof(std)=4; sizeof求取该结构体大小是

20160402_C++中的内存对齐

原题: 有一个如下的结构体: struct A{  long a1;  short a2;  int a3;  int *a4; }; 请问在64位编译器下用sizeof(struct A)计算出的大小是多少? 答案:24 -------------------------------------------------------------------------------- 本题知识点:C/C++ 预备知识:基本类型占用字节 在32位操作系统和64位操作系统上,基本数据类型分别占多少字节

内存对齐

有虚函数的话就有虚表,虚表保存虚函数地址,一个地址占用的长度根据编译器不同有可能不同,vs里面是8个字节,在devc++里面是4个字节.类和结构体的对齐方式相同,有两条规则1.数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行.2.结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照

内存对齐和大小端

一.内存对齐的原因 根本原因:cpu是根据内存访问粒度(memory access granularity,下文简写成MAG)来读取内存,MAG就是cpu一次内存访问操作的数据量,具体数值依赖于特定的平台,一般是2byte.4byte.8byte. 内存对齐:更够减少内存读取次数(相对于内存不对齐),为了访问未对齐的内存,处理器需要作两次内存访问:而对齐的内存访问仅需要一次访问. 二.内存对齐的步骤 每个平台上的编译器都有自己的默认“对齐系数”.同时,我们也可以通过预编译命令#pragma pa

关于内存对齐的那些事

Wrote by mutouyun. (http://darkc.at/about-data-structure-alignment/) 1. 内存对齐(Data Structure Alignment)是什么 内存对齐,或者说字节对齐,是一个数据类型所能存放的内存地址的属性(Alignment is a property of a memory address). 这个属性是一个无符号整数,并且这个整数必须是2的N次方(1.2.4.8.--.1024.--). 当我们说,一个数据类型的内存对齐

c++编程思想(三)--c++中c 续,重点sizeof和内存对齐

之前理论性的太多,下面就是代码及理论结合了 1.sizeof()是一个独立运算符,并不是函数,可以让我们知道任何变量字节数,可以顺带学一下struct,union,内存对齐 内存对齐:为了机器指令快速指向地址值,编译器内部实际上会内存对齐,怎么理解了,以struct为例 先讲一下各个变量类型内存大小 所以struct理论上是:1+2+4+4+4+8+8 = 31,但是实际是 实际大小是32(1+2+1+4)+(4+4)+8+8 然后再把int和short位置调换 实际大小是40   (1+3)+

struct内存对齐1:gcc与VC的差别

struct内存对齐:gcc与VC的差别 内存对齐是编译器为了便于CPU快速访问而采用的一项技术,对于不同的编译器有不同的处理方法. Win32平台下的微软VC编译器在默认情况下采用如下的对齐规则: 任何基本数据类型T的对齐模数就是T的大小,即sizeof(T).比如对于double类型(8字节),就要求该类型数据的地址总是8的倍数,而char类型数据(1字节)则可以从任何一个地址开始.Linux下的GCC奉行的是另外一套规则:任何2字节大小(包括单字节吗?)的数据类型(比如short)的对齐模

c++中类对象的内存对齐

很多C++书籍中都介绍过,一个Class对象需要占用多大的内存空间.最权威的结论是: *非静态成员变量总合.(not static) *加上编译器为了CPU计算,作出的数据对齐处理.(c语言中面试中经常会碰到内存对齐的问题) *加上为了支持虚函数(virtual function),产生的额外负担. 下面给出几个程序来看一下: #include <iostream> #include <cstdio> #include <string> using namespace