中国剩余定理 poj1006 模板

题目链接:http://poj.org/problem?id=1006

题意:每个人的体力,情感,智力周期分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

分析:中国剩余定理的板子题

23,28,33满足两两互质,故直接套板子即可

先上模板:

//n个方程:x=a[i](mod m[i]) (0<=i<n)
LL china(int n, LL *a, LL *m){
    LL M = 1, ret = 0;
    for(int i = 0; i < n; i ++) M *= m[i];
    for(int i = 0; i < n; i ++){
        LL w = M / m[i];
        ret = (ret + w * inv(w, m[i]) * a[i]) % M;
    }
    return (ret + M) % M;
}

然后代码

#include<cstdio>
typedef long long LL;
const int N = 100000 + 5;
void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
    if (!b) {d = a, x = 1, y = 0;}
    else{
        ex_gcd(b, a % b, y, x, d);
        y -= x * (a / b);
    }
}
LL inv(LL t, LL p){//如果不存在,返回-1
    LL d, x, y;
    ex_gcd(t, p, x, y, d);
    return d == 1 ? (x % p + p) % p : -1;
}
LL china(int n, LL *a, LL *m){//中国剩余定理
    LL M = 1, ret = 0;
    for(int i = 0; i < n; i ++) M *= m[i];
    for(int i = 0; i < n; i ++){
        LL w = M / m[i];
        ret = (ret + w * inv(w, m[i]) * a[i]) % M;
    }
    return (ret + M) % M;
}
int main(){
    LL p[3], r[3], d, ans, MOD = 21252;
    int cas = 0;
    p[0] = 23; p[1] = 28; p[2] = 33;
    while(~scanf("%I64d%I64d%I64d%I64d", &r[0], &r[1], &r[2], &d) && (~r[0] || ~r[1] || ~r[2] || ~d)){
        ans = ((china(3, r, p) - d) % MOD + MOD) % MOD;
        printf("Case %d: the next triple peak occurs in %I64d days.\n", ++cas, ans ? ans : 21252);
    }

}

原文地址:https://www.cnblogs.com/qingjiuling/p/11386331.html

时间: 2024-10-14 09:57:58

中国剩余定理 poj1006 模板的相关文章

poj1006生理周期(中国剩余定理)

1 /* 2 中国剩余定理可以描述为: 3 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: 4 x=R1r1+R2r2+…+Rnrn+RD 5 其中R1是d2.d3.….dn的公倍数,而且被d1除,余数为1:(称为R1相对于d1的数论倒数) 6 R1 . 7 R2 . 8 … . 9 Rn是d1.d2.….dn-1的公倍数,而且被dn除,余数为1: 10 D是d1.d2.….的最小公倍数: 11 R是任意整数(代表倍数),可根据实际需要决定: 12 且d1..…

数论快速入门(同余、扩展欧几里德、中国剩余定理、大素数测定和整数分解、素数三种筛法、欧拉函数以及各种模板)

数学渣渣愉快的玩了一把数论,来总结一下几种常用的算法入门,不过鶸也是刚刚入门, 所以也只是粗略的记录下原理,贴下模板,以及入门题目(感受下模板怎么用的) (PS:文中蓝色字体都可以点进去查看百度原文) 附赠数论入门训练专题:点我打开专题(题目顺序基本正常,用以配套数论入门) 一.同余定理 简单粗暴的说就是:若 a-b == m 那么 a%m == b%m 这个模运算性质一眼看出...直接上入门水题: Reduced ID Numbers 附AC代码(这个也没啥模板....知道就好) #inclu

poj1006 中国剩余定理&amp;&amp;中国剩余定理解析

poj 1006 题的思路不是很难的,可以转化数学式: 现设 num 是下一个相同日子距离开始的天数 p,e,i,d 如题中所设! 那么就可以得到三个式子:( num + d ) % 23 == p: ( num + d ) % 28 == e: ( num + d ) % 33 == i: p,e,i,d 是我们输入的,那么我们需要求出num即可,为了方便,我们将num+d暂时作为一个整体!令x = num + d: 即:x % 23 == p: x % 28 == e: x % 33 ==

POJ1006——Biorhythms(中国剩余定理)

Biorhythms Description人生来就有三个生理周期,分别为体力.感情和智力周期,它们的周期长度为23天.28天和33天.每一个周期中有一天是高峰.在高峰这天,人会在相应的方面表现出色.例如,智力周期的高峰,人会思维敏捷,精力容易高度集中.因为三个周期的周长不同,所以通常三个周期的高峰不会落在同一天.对于每个人,我们想知道何时三个高峰落在同一天.对于每个周期,我们会给出从当前年份的第一天开始,到出现高峰的天数(不一定是第一次高峰出现的时间).你的任务是给定一个从当年第一天开始数的天

poj1006 ( hdu1370 ):中国剩余定理裸题

裸题,没什么好说的 第一个中国剩余定理 写暴力都过了..可见这题有多水 代码: #include<iostream> #include<stdio.h> #include<math.h> #include<string> #include<map> #include<algorithm> using namespace std; #define MAX 200000000 #define ull unsigned long long

LUOGU P4777 【模板】扩展中国剩余定理(EXCRT)

传送门 解题思路 扩展 $crt?$,就是中国剩余定理在模数不互质的情况下,首先对于方程 ?     $\begin{cases} x\equiv a_1\mod m_1\\x\equiv a_2\mod m_2\end{cases}$ 来说,可以将其写为: $\begin{cases} x=k_1*m_1+a_1\\x=k_2*m_2+a_2\end{cases}$ 然后联立方程: ?     $k_1*m_1+a_1=k_2*m_2+a_2$ $\Leftrightarrow -k_1*m_

Hello Kiki(中国剩余定理——不互质的情况)

Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 247 Accepted Submission(s): 107   Problem Description One day I was shopping in the supermarket. There was a cashier counting coins serio

中国剩余定理的应用

设n>=2,m1,m2,....mn,是两两互质的正整数,记 M = ∏mi, Mi = M/mi. 则同余方程组 X≡a1(mod m1) X≡a2 (mod m2) X≡an (mod mn) 有对模M的唯一解 X≡∑aiMiMi’(mod M) 上述就是中国剩余定理 下面给出求此类同余方程组最小非负整数解的代码 LL 代表 long long 1 LL China(LL r) 2 { 3 LL M = 2; 4 LL i,Mi,x0,y0,d,ans = 0; 5 for(i=1;i<=

中国剩余定理总结

当你遇到x == c (mod p) 要你求解x的时候,是不是很容易的想到了这样转换---> x - py = c运用extgcd得到答案.但是现在如果有很多个x呢?如: x == c1(mod p1) x == c2(mod p2) ............................... x == cn(mod pn) 这时候你要如何求解呢?肯定不能像上面一样吧! 其实这类问题有一个专门的算法成为孙子定理流行叫法是中国剩余定理(China Remainder Theorem). 一般一