创建进程池与线程池concurrent.futures模块的使用

一、进程池。

当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量就应该考虑去 限制进程数或线程数,从而保证服务器不会因超载而瘫痪。这时候就出现了进程池和线程池。

二、concurrent.futures模块介绍

concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

Both implement the same interface, which is defined by the abstract Executor class

三、基本方法:

submit(fn, *args, **kwargs):异步提交任务

map(func, *iterables, timeout=None, chunksize=1):取代for循环submit的操作

shutdown(wait=True):相当于进程池的pool.close()+pool.join()操作

  • wait=True,等待池内所有任务执行完毕回收完资源后才继续
  • wait=False,立即返回,并不会等待池内的任务执行完毕
  • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
  • submit和map必须在shutdown之前

result(timeout=None):取得结果

add_done_callback(fn):回调函数

done():判断某一个线程是否完成

cancle():取消某个任务

四、进程池代码实例——ProcessPoolExecutor

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import current_process
import time

def func(i):
    print(f'进程 {current_process().name} 正在执行任务 {i}')
    time.sleep(1)
    return i**2

if __name__ == '__main__':
    pool = ProcessPoolExecutor(4)  # 进程池只有4个进程
    lt = []
    for i in range(20):  # 假设执行20个任务
        future = pool.submit(func,i)   # func任务要做20次,4个进程负责完成这个20个任务
        # print(future.result())   # 如果没有结果就一直等待拿到结果,导致了所有任务都在串行
        lt.append(future)
    pool.shutdown() # 默认为True,关闭了池的入口,会等待所有的任务执行完,结束阻塞,
    for fu in lt:
        print(fu.result())  # 等待所有的任务都执行完了,一起把返回值打印出来

五、线程池代码示例——ThreadPoolExecutor

from concurrent.futures import ThreadPoolExecutor
from threading import currentThread
import time

def func(i):
    print(f'线程 {currentThread().name} 正在执行任务 {i}')
    time.sleep(1)
    return i**2

if __name__ == '__main__':
    fool = ThreadPoolExecutor(4)  # 线程池里只有4个线程
    lt = []
    for i in range(20):
        futrue = fool.submit(func,i)   # func任务要做20次,4个线程负责完成这20次任务
        lt.append(futrue)
    fool.shutdown()  # 默认为True,关闭了池的入口,会等待所有的任务执行完,结束阻塞,
    for fu in lt:
        print(fu.result())   # 等待所有的任务都执行完了,一起把返回值打印出来

六、回调函数add_done_callback(fn)

提交任务的两种方式:
同步: 提交了一个任务,必须等任务执行完了(拿到返回值),才能执行下一行代码
异步: 提交了一个任务,不要等执行完了,可以直接执行下一行代码。

ps:进程和线程回调方法的使用写一块了,注释掉的是进程的使用。

from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
from threading import currentThread
from multiprocessing import current_process
import time

def task(i):
    print(f'线程 {currentThread().name} 正在执行任务 {i}')
    # print(f'进程 {current_process().name} 正在执行任务 {i}')
    time.sleep(1)
    return i**2

def parse(futrue):
    # 处理拿到的结果
    print(futrue.result())

if __name__ == '__main__':
    pool = ThreadPoolExecutor(4)  # 线程池里只有4个线程
    # pool = ProcessPoolExecutor(4)  # 进程池里只有4个进程
    lt = []
    for i in range(20):
        futrue = pool.submit(task,i)  # task任务要做20次,分别由四个进程完成这20个任务
        futrue.add_done_callback(parse)
        # 为当前任务绑定一个函数,在当前任务执行结束的时候会触发这个函数
        # 会把futrue对象作为参数传给函数
        # 这个称之为回调函数,处理完了回来就调用这个函数。

跟上面线程池里的例子相比:回调函数的作用,不需要等待所有的任务执行完才打印返回值。每执行完一个任务直接打印结果,实现一个并发的效果,效率有所提升。

原文地址:https://www.cnblogs.com/guapitomjoy/p/11564397.html

时间: 2024-11-08 10:50:33

创建进程池与线程池concurrent.futures模块的使用的相关文章

Python并发编程之线程池/进程池--concurrent.futures模块

h2 { color: #fff; background-color: #f7af0d; padding: 3px; margin: 10px 0px } 一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间.但从Python3.2开始,标准库为我们提供了conc

使用concurrent.futures模块并发,实现进程池、线程池

一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的异步多线程/多进程代码.从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码.实现了对thread

python并发编程之进程池,线程池concurrent.futures

进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多, 这会对服务端主机带来巨大的压力,甚至于不堪重负而瘫痪,于是我们必须对服务端开启的进程数或线程数加以控制,让机器在一个自己可以承受的范围内运行,这就是进程池或线程池的用途, 例如进程池,就是用来存放进程的池子,本质还是基于多进程,只不过是对开启进程的数目加上了限制 Python--concurrent.fu

python3 线程池-threadpool模块与concurrent.futures模块

一. 既然多线程可以缩短程序运行时间,那么,是不是线程数量越多越好呢? 显然,并不是,每一个线程的从生成到消亡也是需要时间和资源的,太多的线程会占用过多的系统资源(内存开销,cpu开销),而且生成太多的线程时间也是可观的,很可能会得不偿失,这里给出一个最佳线程数量的计算方式: 最佳线程数的获取: 1.通过用户慢慢递增来进行性能压测,观察QPS(即每秒的响应请求数,也即是最大吞吐能力.),响应时间 2.根据公式计算:服务器端最佳线程数量=((线程等待时间+线程cpu时间)/线程cpu时间) * c

4月27日 python学习总结 GIL、进程池、线程池、同步、异步、阻塞、非阻塞

一.GIL:全局解释器锁 1 .GIL:全局解释器锁 GIL本质就是一把互斥锁,是夹在解释器身上的, 同一个进程内的所有线程都需要先抢到GIL锁,才能执行解释器代码 2.GIL的优缺点: 优点:  保证Cpython解释器内存管理的线程安全 缺点:同一进程内所有的线程同一时刻只能有一个执行,也就说Cpython解释器的多线程无法实现并行 二.GIL与多线程 有了GIL的存在,同一时刻同一进程中只有一个线程被执行 听到这里,有的同学立马质问:进程可以利用多核,但是开销大,而python的多线程开销

python之进程池与线程池

一.进程池与线程池介绍池子使用来限制并发的任务数目,限制我们的计算机在一个自己可承受的范围内去并发地执行任务 当并发的任务数远远超过了计算机的承受能力时,即无法一次性开启过多的进程数或线程数时就应该用池的概念将开启的进程数或线程数 池子内什么时候装进程:并发的任务属于计算密集型池子内什么时候装线程:并发的任务属于IO密集型 不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不

python并发编程之进程池,线程池

要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的1.concurent.fut

进程池和线程池

为什么要用线程池 系统启动一个新线程的成本是比较高的,因为它涉及与操作系统的交互.在这种情形下,使用线程池可以很好地提升性能,尤其是当程序中需要创建大量生存期很短暂的线程时,更应该考虑使用线程池. 线程池在系统启动时即创建大量空闲的线程,程序只要将一个函数提交给线程池,线程池就会启动一个空闲的线程来执行它.当该函数执行结束后,该线程并不会死亡,而是再次返回到线程池中变成空闲状态,等待执行下一个函数. 此外,使用线程池可以有效地控制系统中并发线程的数量.当系统中包含有大量的并发线程时,会导致系统性

python37 1.GIL--全局解释器锁 2.GIL带来的问题 3.为什么需要GIL 4.GIL的加锁解锁时机 5.关于GIL的性能的讨论 6.线程常用方法 7.GIL锁与自定义锁的区别 8.进程池与线程池 9.同步异步 10.异步调用

复习1.JoinableQueue--可以被join的队列2.多线程3线程的使用方法与进程一模一样3.1守护线程3.2线程安全问题3.3解决方案3.3.1互斥锁mutex3.3.2递归锁Rlock3.3.3信号量semaphore3.3.4死锁问题 详解:1.JoinableQueue--可以被join的队列 1.1join是等待任务结束 队列怎么叫结束 调用task_done一次则表示有一个数据被处理完成了,当task_done次数等于put的次数就意味着任务处理完成了 1.2这就是join的