原文链接:http://tecdat.cn/?p=6551
常用术语中的旅行推销员问题(TSP)是最复杂的问题之一,归结为组合优化。旅行到n个城市(顶点)需要检查(n-1)!可能性。3,000个地点有4 * 10 ^ 9131个可能的解决方案。
本文调查了R包的性能:TSP和tspmeta。结果对我的使用非常满意。
以下代码输入您的TSP225.csv文件并输出您的解决方案和可视化。生成的‘tour‘对象是一类TOUR和整数;它包含您的解决方案。
coords.df <- data.frame(long=TSP225$Long, lat=TSP225$Lat)
coords.mx <- as.matrix(coords.df)
# Compute distance matrix
dist.mx <- dist(coords.mx)
# Construct a TSP object
tsp.ins <- tsp_instance(coords.mx, dist.mx )
#
tour <- run_solver(tsp.ins, method="2-opt")
#Plot
autoplot(tsp.ins, tour)
?
比较解决方案:下图显示了7种启发式解决方案的最佳旅游长度和协和式的确切解决方案。对于协和解决方案,我使用了在UW-Madison主持的NEOS-Server。
methods <- c("nearest_insertion" "2-opt")
tours <- sapply(methods simplify = FALSE)
dotchart( ),
)
?
在2D中的#2 3000个随机顶点
显然,随着顶点数量的增长,精确解和其他启发式解决方案之间的差异显着增加。2-opt解决方案最接近最优。重复的2-opt解决方案和挑选最小的值让我非常接近于确切的解决方案 。
?
?
非常感谢您阅读本文,有任何问题请在下面留言!
大数据部落 -中国专业的第三方数据服务提供商,提供定制化的一站式数据挖掘和统计分析咨询服务
统计分析和数据挖掘咨询服务:y0.cn/teradat(咨询服务请联系官网客服)
?QQ:3025393450
?
【服务场景】
科研项目; 公司项目外包;线上线下一对一培训;数据采集;学术研究;报告撰写;市场调查。
【大数据部落】提供定制化的一站式数据挖掘和统计分析咨询
欢迎选修我们的R语言数据分析挖掘必知必会课程!
原文地址:https://www.cnblogs.com/tecdat/p/11515474.html
时间: 2024-10-25 17:18:44