[uva11916] Emoogle Grid (离散对数)

转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

 Emoogle Grid 

You have to color an MxN ( 1M, N108) two dimensional grid. You will be provided K ( 2K108) different colors to do so. You will also be provided a list of B ( 0B500) list of blocked cells of this grid. You cannot color those blocked cells. A cell can be described as (x, y), which points to the y-th cell from the left of the x-th row from the top.

While coloring the grid, you have to follow these rules -

  1. You have to color each cell which is not blocked.
  2. You cannot color a blocked cell.
  3. You can choose exactly one color from K given colors to color a cell.
  4. No two vertically adjacent cells can have the same color, i.e. cell (x, y) and cell (x + 1, y) cannot contain the same color.

Now the great problem setter smiled with emotion and thought that he would ask the contestants to find how many ways the board can be colored. Since the number can be very large and he doesn‘t want the contestants to be in trouble dealing with big integers; he decided to ask them to find the result modulo 100,000,007. So he prepared the judge data for the problem using a random generator and saved this problem for a future contest as a giveaway (easiest) problem.

But unfortunately he got married and forgot the problem completely. After some days he rediscovered his problem and became very excited. But after a while, he saw that, in the judge data, he forgot to add the integer which supposed to be the `number of rows‘. He didn‘t find the input generator and his codes, but luckily he has the input file and the correct answer file. So, he asks your help to regenerate the data. Yes, you are given the input file which contains all the information except the `number of rows‘ and the answer file; you have to find the number of rows he might have used for this problem.

Input

Input starts with an integer T ( T150), denoting the number of test cases.

Each test case starts with a line containing four integers N, K, B and R ( 0R < 100000007) which denotes the result for this case. Each of the next B lines will contains two integers x and y ( 1xM, 1yN), denoting the row and column number of a blocked cell. All the cells will be distinct.

Output

For each case, print the case number and the minimum possible value of M. You can assume that solution exists for each case.

Sample Input

4
3 3 0 1728
4 4 2 186624
3 1
3 3
2 5 2 20
1 2
2 2
2 3 0 989323

Sample Output

Case 1: 3
Case 2: 3
Case 3: 2
Case 4: 20

题意:有M行N列的网格,给其涂上K中颜色,其中有B个已知位置的格子不能涂颜色,要求上下两个相邻的格子的颜色不能相同,问在方案数mod100,000,007=R的情况下,M为多少?(保证已知位置的格子一定在M行N列内)保证M有解

分析:所有在第一行或者其上方的格子为不可涂时的格子的涂色方案数为K,其余点的涂色方案数为K-1.

设所有已知位置的格子的行的最大值为x,记在前x-1行内不可涂色的格子相邻的下方的可涂色格子的数目为a,不可涂色的格子中位于第一行的格子的数目为b,则最终可涂K种颜色的格子的数目为a+N-b,只能涂K-1中颜色的格子的数目为x*N-(a+N-b);则求x行的涂色方案为temp=K^(a+N-b)*(K-1)^(x*N-(a+N-b)),若temp=R,则temp即为答案

再考虑第x+1行的情况,若第x行为不可涂色的格子,则这一行的其下方相邻的格子的涂色方案为K,否则为K-1,记可涂K-1种的数目为c,则temp=temp*K^c*(K-1)^(N-c),若temp=R,则temp即为答案

则接下来的每行的新的涂色方案数都为cnt=(K-1)^N,即接下来求cnt^ans*temp=R(mod100,000,007)

cntans=temp-1*R(mod100,000,007)

然后求一下离散对数即可

  1 #include <iostream>
  2 #include <cstring>
  3 #include <cstdio>
  4 #include <algorithm>
  5 #include <cmath>
  6 #include <set>
  7 #define X first
  8 #define Y second
  9 #include <map>
 10 using namespace std;
 11
 12 typedef pair<int,int> PII;
 13 typedef long long ll;
 14 ll n,k,b,r;
 15 set<PII> s;
 16 PII p[1010];
 17 ll maxx=0;
 18 const int mod=100000007;
 19 ll mul_mod(ll x,ll y)
 20 {
 21     return (ll)x*y%mod;
 22 }
 23 ll fast_mod(int m,ll t)
 24 {
 25     ll temp=(long long)m;
 26     ll ret=1LL;
 27     while(t)
 28     {
 29         if(t&1)ret=mul_mod(ret,temp);
 30         temp=mul_mod(temp,temp);
 31         t/=2;
 32     }
 33     return ret;
 34 }
 35 ll ext_gcd(ll a,ll t,ll &d,ll &x,ll &y)
 36 {
 37     if(!t){d=a;x=1;y=0;}
 38     else {
 39         ext_gcd(t,a%t,d,y,x);y-=x*(a/t);
 40     }
 41 }
 42 ll inv(ll a)
 43 {
 44     ll d,x,y;
 45     ext_gcd(a,mod,d,x,y);
 46     return d == 1 ? (x%mod+mod)%mod : -1;
 47 }
 48 ll log_mod(ll a,ll b)
 49 {
 50     ll m,v,e=1,i;
 51     m=(ll)sqrt(mod+0.5);
 52     v=inv(fast_mod(a,m));
 53     map<ll ,ll >x;
 54     x.clear();
 55     x[1]=0;
 56     for(i=1;i<m;i++)
 57     {
 58         e=mul_mod(e,a);
 59         if(!x.count(e))x[e]=i;
 60     }
 61     for(i=0;i<m;i++)
 62     {
 63         if(x.count(b))return i*m+x[b];
 64         b=mul_mod(b,v);
 65     }
 66     return -1;
 67 }
 68 ll solve()
 69 {
 70     int temp=0;
 71     for(int i=0;i<b;i++)
 72         if(p[i].X!=maxx&&!s.count(make_pair(p[i].X+1,p[i].Y)))temp++;
 73     temp+=n;
 74     for(int i=0;i<b;i++)
 75         if(p[i].X==1)temp--;
 76     ll ret=mul_mod(fast_mod(k,temp),fast_mod(k-1,(long long)maxx*n-b-temp));
 77     if(ret==r)return maxx;
 78     temp=0;
 79     for(int i=0;i<b;i++)if(p[i].X==maxx)temp++;
 80     maxx++;
 81     ret=mul_mod(ret,fast_mod(k,temp));
 82     ret=mul_mod(ret,fast_mod(k-1,n-temp));
 83     if(ret==r)return maxx;
 84     //求(ret*((k-1)^n)^x)%mod=r
 85     //即((k-1)^n)^x=r*(ret^(-1))%mod
 86     return log_mod(fast_mod(k-1,n),mul_mod(r,inv(ret)))+maxx;
 87 }
 88
 89 int main()
 90 {
 91     ios::sync_with_stdio(false);
 92     int t;
 93     //freopen("in.in","r",stdin);
 94     cin>>t;
 95     int cas=1;
 96     while(t--)
 97     {
 98         maxx=1;
 99         s.clear();
100         cin>>n>>k>>b>>r;
101         for(int i=0;i<b;i++)
102         {
103             cin>>p[i].X>>p[i].Y;
104             if(p[i].X>maxx)maxx=p[i].X;
105             s.insert(p[i]);
106         }
107         cout<<"Case "<<cas++<<": "<<solve()<<endl;
108     }
109     return 0;
110 }

代码君

时间: 2024-10-26 16:58:34

[uva11916] Emoogle Grid (离散对数)的相关文章

UVA 11916 Emoogle Grid 离散对数 大步小步算法

LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <math.h> #include <set> #include <map> #include <queue> #include <algorithm> #include <string.h> #include <string> using

uva11916 Emoogle Grid (BSGS)

https://uva.onlinejudge.org/external/119/p11916.pdf 令m表示不能染色的格子的最大行号 设>m行时可以染k种颜色的格子数有ck个,恰好有m行时可以染k种颜色的格子数有ckm个 分m行.m+1行.>m+1行讨论 如果是m行:k^ckm * (k-1)^(n*m-b-ckm) = r 如果是m+1行, k^ckm * (k-1)^(n*m-b-ckm) * k^(ck-ckm) * (k-1)^(n-(ck-ckm)) = r 如果>m行,k

UVA 11916 - Emoogle Grid(数论)

UVA 11916 - Emoogle Grid 题目链接 题意:一个N列的网格,有B个格子可以不涂色,其他格子各涂一种颜色,现在一共有k种颜色,要求同一列格子颜色不能相同,问总方案数 MOD 100000007答案等于R时最小的M是多少. 思路:先把格子分为两部分,有不涂色的一部分,没有的一部分,然后计算出有的情况数,之后如果每多一行,每个格子上能涂颜色必然是k - 1种,也就是每多一行多(k - 1)^n总方案,所以也就是求 前一部分情况 * ((k - 1)^n)^x % MOD = R时

uva 11916 - Emoogle Grid(大步小步算法)

题目连接:uva 11916 - Emoogle Grid 题目大意:有一问题,在M行N列的网格上涂K种颜色,其中有B个格子不用涂色,其它每个格子涂一种颜色,同一列的上下两个相邻的格子不能涂相同的颜色.给出M,N,K和B个格子的位置,求出总方案数模掉1e8+7的结果R.现在已知R,求最小的M. 解题思路:有确定不用涂色格子的区域作为不变部分,总数通过计算为tmp,外加可变部分的第一行,方案数为cnt,可变部分除第一行外,每加一行都将总数乘以(K?1)N,既有 cnt?PM=Rmod(1e8+7)

UVA - 11916 Emoogle Grid (离散对数取模)

You have to color an M x N (1M, N108) two dimensional grid. You will be provided K (2K108) different colors to do so. You will also be provided a list of B (0B500)list of blocked cells of this grid. You cannot color those blocked cells. A cell can be

UVa 11916 (离散对数) Emoogle Grid

因为题目要求同列相邻两格不同色,所以列与列之间不影响,可以逐列染色. 如果一个格子的上面相邻的格子,已经被染色则染这个格子的时候,共有k-1中选择. 反过来,如果一个格子位于第一列,或者上面相邻的格子是不能被染色的格子,则共有k中选择. 虽然,矩阵的行数不定,但至少为所有不能被染色格子行标的最大值m. 分别检验一下染m行和m+1行的方案数(mod 100000007)是否为r 否则的话,后面每染一行方案数都会乘p = (k-1)n,假设前面计算出来的m+1行方案数为cnt 下面的任务就是求解 p

UVA - 11916 Emoogle Grid (组合计数+离散对数)

假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色.给出M,N,K和B个格子的位置,求出涂色方案总数除以1e8+7的结果R. 本题的任务和这个相反:已知N,K,R和B个格子的位置,求最小可能的M. 蓝书(大白)上的例题,设xm为不能涂色的格子的最大x值,则分三种情况讨论:M=xm,M=xm+1,M>xm+1.前两种用组合公式直接算,第三种可设前xm+1行的格子涂色方法有n种,由于每增加一行,总涂色方案数

Uva_11916 Emoogle Grid

题目链接 题意: 有个N X M的棋盘, 有K种颜色, 有B个不可涂色的位置, 共有R种涂色方案. 1)每个可涂色的位置必须涂上一种颜色 2)不可涂色位置不能涂色 3)每个位置必须从K种颜色中选出一种颜色进行涂色 4)当前格子(x,y) 上面的那个格子(x+1,y)不能同色 现在已知N, K, B, R, 求满足条件的最小的M 思路: B个不可涂色位置设为(x1, y1), (x2, y2), (x3, y3), ... , (xb, yb) 1)M必然 ≥ max(x[i]) 2)设前max(

uva 11916 Emoogle Grid

题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足题意. 思路:分成两个部分.设给出的B个不能涂的格子的最大行坐标为m. 首先,我们能计算出前m行的方案数cnt,若cnt=r,则m就是答案.每增加一行,就会增加(K-1)^m种方法,接着令p=(K-1)^M,我们能计算出前m+1行的方案数cnt,若cnt=r 则答案为 m+1.否则,设下面还需要t行