hdu3652---B-number(数位dp)

Problem Description

A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string “13” and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.

Input

Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).

Output

Print each answer in a single line.

Sample Input

13 100 200 1000

Sample Output

1 1 2 2

Author

wqb0039

Source

2010 Asia Regional Chengdu Site —— Online Contest

求包含13且是13的倍数的个数

状态很好设计

dp[i][rest][k][e] 表示i位数,最高为为e,模13为k,是否包含13

然后套上漂亮的数位dp板子

算是熟悉一下这个写法了

/*************************************************************************
    > File Name: hdu3652.cpp
    > Author: ALex
    > Mail: [email protected]
    > Created Time: 2015年02月22日 星期日 14时09分09秒
 ************************************************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

int dp[11][14][2][11];
int bit[12];

int dfs (int cur, int rest, bool t, int e, bool flag)
{
    if (cur == -1)
    {
        return t && (!rest);
    }
    if (~dp[cur][rest][t][e] && !flag)
    {
        return dp[cur][rest][t][e];
    }
    int end = flag ? bit[cur] : 9;
    int ans = 0;
    for (int i = 0; i <= end; ++i)
    {
        ans += dfs (cur - 1, (rest * 10 + i) % 13, t || (e == 1 && i == 3), i, flag && (i == end));
    }
    if (!flag)
    {
        dp[cur][rest][t][e] = ans;
    }
    return ans;
}

int calc (int n)
{
    int cnt = 0;
    while (n)
    {
        bit[cnt++] = n % 10;
        n /= 10;
    }
    return dfs (cnt - 1, 0, 0, 0, 1);
}

int main ()
{
    int n;
    memset (dp, -1, sizeof(dp));
    while (~scanf("%d", &n))
    {
        printf("%d\n", calc (n));
    }
    return 0;
}
时间: 2024-11-06 11:04:27

hdu3652---B-number(数位dp)的相关文章

Hdu3079Balanced Number数位dp

枚举支点,然后就搞,记录之前的点的力矩和. #include <cstdio> #include <cstring> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include <cstdlib> #include <list> #include <s

SPOJ MYQ10 Mirror Number 数位dp&#39;

题目链接:点击打开链接 MYQ10 - Mirror Number A number is called a Mirror number if on lateral inversion, it gives the same number i.e it looks the same in a mirror. For example 101 is a mirror number while 100 is not. Given two numbers a and b, find the number

多校5 HDU5787 K-wolf Number 数位DP

1 // 多校5 HDU5787 K-wolf Number 数位DP 2 // dp[pos][a][b][c][d][f] 当前在pos,前四个数分别是a b c d 3 // f 用作标记,当现在枚举的数小于之前的数时,就不用判断i与dig[pos]的大小 4 // 整体来说就,按位往后移动,每次添加后形成的数都小于之前的数,并且相邻k位不一样,一直深搜到cnt位 5 // http://blog.csdn.net/weizhuwyzc000/article/details/5209769

hdu 5898 odd-even number 数位DP

odd-even number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 716    Accepted Submission(s): 385 Problem Description For a number,if the length of continuous odd digits is even and the length

hdu 5787 K-wolf Number 数位dp

数位DP 神模板 详解 为了方便自己参看,我把代码复制过来吧 // pos = 当前处理的位置(一般从高位到低位) // pre = 上一个位的数字(更高的那一位) // status = 要达到的状态,如果为1则可以认为找到了答案,到时候用来返回, // 给计数器+1. // limit = 是否受限,也即当前处理这位能否随便取值.如567,当前处理6这位, // 如果前面取的是4,则当前这位可以取0-9.如果前面取的5,那么当前 // 这位就不能随便取,不然会超出这个数的范围,所以如果前面取

codeforces Hill Number 数位dp

http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits:  5000 MS   Memory Limits:  200000 KB 64-bit interger IO format:  %lld   Java class name:  Main Description A Hill Number is a number whose digits possibly rise and then possibl

fzu 2109 Mountain Number 数位DP

题目链接:http://acm.fzu.edu.cn/problem.php?pid=2109 题意: 如果一个>0的整数x,满足a[2*i+1] >= a[2*i]和a[2*i+2],则这个数为Mountain Number. 给出L, R,求区间[L, R]有多少个Mountain Number. 思路: 数位DP,判断当前是偶数位还是奇数位(从0开始),如果是偶数位,那么它要比前一个数的值小, 如果是奇数位,那么它要比前一个数的值大. 1 #include <iostream>

hdu3709---Balanced Number(数位dp)

Problem Description A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the nu

HDU 3709 Balanced Number (数位DP)

Balanced Number Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 3798    Accepted Submission(s): 1772 Problem Description A balanced number is a non-negative integer that can be balanced if a pi

hdu 5898 odd-even number(数位dp)

Problem Description For a number,if the length of continuous odd digits is even and the length of continuous even digits is odd,we call it odd-even number.Now we want to know the amount of odd-even number between L,R(1<=L<=R<= 9*10^18). Input Fir