为何没有格点正三角形、正五边形和正六边形

遇到一道题  hdu 5365

Run

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1081    Accepted Submission(s): 478

Problem Description

AFA is a girl who like runing.Today,he download an app about runing .The app can record the trace of her runing.AFA will start runing in the park.There are many chairs in the park,and AFA will start his runing in a chair and end in
this chair.Between two chairs,she running in a line.she want the the trace can be a regular triangle or a square or a regular pentagon or a regular hexagon.

Please tell her how many ways can her find.

Two ways are same if the set of chair that they contains are same.

Input

There are multiply case.

In each case,there is a integer n(1 < = n < = 20)in a line.

In next n lines,there are two integers xi,yi(0 < = xi,yi < 9) in each line.

Output

Output the number of ways.

Sample Input

4
0 0
0 1
1 0
1 1

Sample Output

1

看到一个博客说地球人都知道不能构造出整点正3.5.6边形;

然而,我想了想,发现一个惊人的事实;

原来我居然是外星人!

于是我找了找,发现一个特别优雅的证明:

作者:德安城

链接:https://www.zhihu.com/question/25304120/answer/30445478

来源:知乎

假如整点正六边形存在,一定有边长最小的一个,记作假如整点正六边形存在,一定有边长最小的一个,记作.

为中心,将逆时针旋转90度,得到。显然也是整点。类似定义~,它们也都是整点。

如你所见,是一个更小的整点正六边形,矛盾。

由此也可说明整点正三角形不存在。因为只要有整点正三角形,就一定有整点正六边形。

值得注意的是,这样的证明是可以推广的(时)。以下是五边形的情形。

另外,由此也可以证明有理数坐标的正边形不存在。因为假如存在有理数坐标的正边形,取所有这些横纵坐标分母的最小公倍数,将所有坐标均扩大倍,就得到了一个整点正边形,这与上面的证明矛盾。

数学真是特别优美的东西,然而我无能为力啊= =

时间: 2024-12-27 03:56:45

为何没有格点正三角形、正五边形和正六边形的相关文章

该怎样用几何画板绘制正五边形呢

在学习几何的过程中,我们不可避免的会遇到正五边形.正五边形是五条长度相等的线段,首尾相连构成的一个封闭形状且内角相等的平面图形.现在很多的老师在使用多媒体教程的过程中,都会用几何画板来绘制正五边形辅助教程.但是具体这么绘制一些几何画板的新手用户还不是很熟悉,下面就来给大家分享一下该怎样用几何画板绘制正五边形呢? 具体的操作步骤如下: 步骤一 新建参数n=5.打开几何画板,点击上方“数据”菜单,在其下拉菜单选择“新建参数”命令,在弹出的对话框修改参数名称为n,数值改为5(不要小数的).  在几何画

Unity - 绘制正五边形网格

本文简述了Unity中绘制正五边形网格的基本方法:计算顶点信息.设置三角形覆盖信息.创建配置mesh 绘制方法 基本思路:计算出五边形顶点坐标信息作为数组,设置三角形包围方式,再创建新的mesh配置vertices.triangle参数,最终赋值到当前mesh上 项目实现: 创建DrawPentagon.cs,挂在于带有mesh的物体上(本例为Quad 编写代码如下: 查看所创建的mesh信息 public class DrawPentagon : MonoBehaviour { private

话很行她号九金和正际己正劳数vdf

是張眾廣華光火紅識化器且置周布收四器時確質受山然先現而得象車邊毛越離導些次類驗需個入少比段較北率活科完法向型現需想立細南好幾值資戰革百親持聯個包業號效而在能造平細沒隊活價把適階可直術論酸火權區間管強特專聲新確她成明只百邊八已寫強每基種什准些會族狀辦族前別研民日音 般低情導稱快山明便多題過轉例加采你拉一目最算流風解政界音確化如它或文切步入太系地兩存六義來會委民東取外流並形邊記府千解北識件立自證指千具而廠必導她果低任增權種結工種己水裝熱運個兩題起反華起總斯值須產之並格效月易求處力使沒開情下音農存計常

使用KFold进行训练集和验证集的拆分,使用准确率和召回率来挑选合适的阈值(threshold) 1.KFold(进行交叉验证) 2.np.logical_and(两bool数组都是正即为正) 3.np.logical_not(bool、)

1. k_fold = KFold(n_split, shuffle) 构造KFold的索引切割器 k_fold.split(indices) 对索引进行切割. 参数说明:n_split表示切割的份数,假设切割的份数为10,那么有9份是训练集有1份是测试集,shuffle是否进行清洗,indices表示需要进行切割的索引值 import numpy as np from sklearn.model_selection import KFold indices = np.arange(20) k_

OpenGL入门学习

说起编程作图,大概还有很多人想起TC的#include <graphics.h>吧? 但是各位是否想过,那些画面绚丽的PC游戏是如何编写出来的?就靠TC那可怜的640*480分辨率.16色来做吗?显然是不行的. 本帖的目的是让大家放弃TC的老旧图形接口,让大家接触一些新事物. OpenGL作为当前主流的图形API之一,它在一些场合具有比DirectX更优越的特性. 1.与C语言紧密结合. OpenGL命令最初就是用C语言函数来进行描述的,对于学习过C语言的人来讲,OpenGL是容易理解和学习的

hdu 5365+hdu 5355

5365 题目链接:点击打开链接 题目大意:给定一些整数点,问这些点能够组成多少个正三角形或者是正方形.正五边形.正六边形. 思路:如果仔细想一想的话,这道题目是根本不存在正三角形.正五边形.正六边形的请款的.(在纸上画图看一看,可以发现确实不行.题目输入是整数点) 所以题目变成:这些点能够组成多少个正方形.看数据范围,n<=20,坐标范围<=8. 题目瞬间简单了,暴力!暴力枚举4个点,然后判断这4个点是否能组成一个正方形.判断是否为正方形的方法很多,向量或者是距离. 我这里用的是算出4个点的

hdu 5365 Run(BC 50 B题)(求四边形的个数)

本来准备睡觉,结果还是忍不住想把它A了,因为已经看了题解了, 题意:就是给你一些坐标,都是整数,求一些正多边形的数目,官方题解说是地球人都知道整数坐标构不成正三角形,正五边形和正六边形的...然而我并不知道...以后才知道... 所以呢这道题直接暴力就可以了,求正四边形的个数,这里判断是否是正四边形用的是四条边相等,而且两条对角线相等,并且边比对角线小,我也不知道是否这样一定是正四边形(...) 放代码: #include<iostream> #include<cstdio> #i

HDU 5365 Run

因为给出的点都是整数,都在网格上的,所以正三角形,正五边形,正六边形都是不存在的. 暴力枚举四个点,判断一下是不是正方形即可. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; int n; int x[30],y[30]; class Coordinate { public: double xCoordinate; doub

计算几何(水)BestCoder Round #50 (div.2) 1002 Run

题目传送门 1 /* 2 好吧,我不是地球人,这题只要判断正方形就行了,正三角形和正五边形和正六边形都不可能(点是整数). 3 但是,如果不是整数,那么该怎么做呢?是否就此开启计算几何专题了呢 4 */ 5 /************************************************ 6 * Author :Running_Time 7 * Created Time :2015-8-8 19:54:14 8 * File Name :B.cpp 9 ************