自适应滤波

应用:

公式:

自适应滤波器中最重要的一个环节就是其系数的更新算法,如果不对自适应滤波器的系数更新的话,那么它就只是一个普通的FIR滤波器了。系数更新算法有很多种类,最基本、常用、简单的一种方法叫做NLMS(归一化最小均方),让我们先来看看它的数学公式表达:

设置自适应滤波器系数h的所有初始值为0,h的长度为I。

对每个取样值进行如下计算,其中n=0, 1, 2, ...

自适应滤波器系数 是一个长度为I的矢量,也就是一个长度为I的FIR滤波器。在时刻n,滤波器的每个系数对应的输入信号为 ,它也是一个长度为I的矢量。这两个矢量的点乘即为滤波器的输出和目标信号d(n)之间的差为e(n),然后根据e(n)和 , 更新滤波器的系数。

数学公式总是令人难以理解的,下面我们以图示为例进行说明

图中假设自适应滤波器h的长度为4,在时刻7滤波器的输出为:

u[7] = h[0]*x[7] + h[1]*x[6] + h[2]*x[5] + h[3]*x[4]

滤波器的输入信号的平方和powerX为:

powerX = x[4]*x[4] + x[5]*x[5] + x[6]*x[6] + x[7]*x[7]

未知系统的输出d[7]和滤波器的输出u[7]之间的差为:

e[7] = d[7] - u[7]

使用u[7]和x[4]..x[7]对滤波器的系数更新:

h[4] = h[4] + u * e[7]*x[4]/powerX

h[4] = h[5] + u * e[7]*x[5]/powerX

h[4] = h[6] + u * e[7]*x[6]/powerX

h[4] = h[7] + u * e[7]*x[7]/powerX

其中参数u成为更新系数,为0到1之间的一个实数,此值越大系数更新的速度越快。对于每个时刻i都需要进行上述的计算,因此滤波器的系数对于每个参照信号x的取样都更新一次。

参考:摘抄自《用Python做科学计算》http://sebug.net/paper/books/scipydoc/fast_nlms_in_python.html

自适应滤波

时间: 2024-10-24 09:05:29

自适应滤波的相关文章

自适应滤波——第二章:维纳滤波器(1)

作者:桂. 时间:2017-03-23  06:28:45 链接:http://www.cnblogs.com/xingshansi/p/6603263.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 仍然是西蒙.赫金的<自适应滤波器原理>第四版,距离上次看这本书已经过去半个月,要抓点紧了.本文主要包括: 1)何为维纳滤波器(Wiener Filter); 2)Wiener滤波器的推导: 内容为自己的学习总结,内容多有参考他人,最后一并给出链接. 一.维纳滤波器简介 A-基本概念 对于

自适应滤波:最小均方误差滤波器(LMS、NLMS)

作者:桂. 时间:2017-04-02  08:08:31 链接:http://www.cnblogs.com/xingshansi/p/6658203.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记08] 前言 西蒙.赫金的<自适应滤波器原理>第四版第五.六章:最小均方自适应滤波器(LMS,Least Mean Square)以及归一化最小均方自适应滤波器(NLMS,Normalized Least Mean Square).全文包括: 1)LMS与维纳滤波器(Wiener F

基于LMS算法的自适应滤波

前言 姚天任.孙洪的<现代数字信号处理>第三章自适应滤波中关于LMS算法的学习,全文包括: 1.      自适应滤波器简介 2.      自适应干扰抵消原理 3.      自适应滤波原理 4.      最小均方(LMS)算法 5.      Matlab实现 内容为自己读书记录,本人知识有限,若有错误之处,还请各位指出! 一.自适应滤波器简介 自适应滤波器由参数可调的数字滤波器和自适应算法两部分组成.如图所示. 输入信号x(n) 通过参数可调数字滤波器后产生输出信号 y(n),将其与期

自适应滤波——第二章:维纳滤波器(2)

作者:桂. 时间:2017-03-24  06:52:36 链接:http://www.cnblogs.com/xingshansi/p/6609317.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记03] 前言 西蒙.赫金的<自适应滤波器原理>第四版,上一篇看到维纳滤波基本形式:最优化问题,且无任何条件约束.这次看到有约束的部分,简单整理一下思路: 1)拉格朗日乘子法: 2)线性约束最小方差滤波器(Linearly constrained minimum-variance,LC

自适应滤波:维纳滤波器——GSC算法及语音增强

作者:桂. 时间:2017-03-26  06:06:44 链接:http://www.cnblogs.com/xingshansi/p/6621185.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记04] 前言 仍然是西蒙.赫金的<自适应滤波器原理>第四版第二章,首先看到无约束维纳滤波,接着到了一般约束条件的滤波,此处为约束扩展的维纳滤波,全文包括: 1)背景介绍: 2)广义旁瓣相消(Generalized Sidelobe Cancellation, GSC)理论推导: 3)

自适应滤波:梯度下降算法

作者:桂. 时间:2017-04-01  06:39:15 链接:http://www.cnblogs.com/xingshansi/p/6654372.html 声明:欢迎被转载,不过记得注明出处哦~ [学习笔记07] 未完待续 前言 西蒙.赫金的<自适应滤波器原理>第四版第四章:最速下降算法.优化求解按照有/无约束分类:如投影梯度下降算法((Gradient projection)便是有约束的优化求解:按照一阶二阶分类:梯度下降(Gradient descent).Newton法等:按照偏

自适应滤波:矩阵求逆

作者:桂. 时间:2017-04-02  10:36:09 链接:http://www.cnblogs.com/xingshansi/p/6658655.html 声明:欢迎被转载,不过记得注明出处哦~  [读书笔记09] 前言 西蒙.赫金的<自适应滤波器原理>第四版第八章:最小二乘法.因为最小二乘涉及到矩阵求逆,因为通常对于秩缺矩阵其逆是不可求的,这就需要借助广义逆矩阵.而广义逆矩阵可以借助奇异值分解(SVD,Singularly Valuable Decomposition)进行求解. 有

自适应滤波:奇异值分解SVD

作者:桂. 时间:2017-04-03  19:41:26 链接:http://www.cnblogs.com/xingshansi/p/6661230.html 声明:欢迎被转载,不过记得注明出处哦~ [读书笔记10] 前言 广义逆矩阵可以借助SVD进行求解,这在上一篇文章已经分析.本文主要对SVD进行梳理,主要包括: 1)特征向量意义: 2)特征值分解与SVD: 3)PCA与SVD: 内容为自己的学习记录,其中多有借鉴他人之处,最后一并给出链接. 一.特征向量 第一反应是:啥是特征向量?为什

自适应滤波原理及simulink