HDU 1013 Digital Roots 题解

Problem Description

The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is
repeated. This is continued as long as necessary to obtain a single digit.

For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process
must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

Input

The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.

Output

For each integer in the input, output its digital root on a separate line of the output.

Sample Input

24
39
0

Sample Output

6
3

水题,数位相加到剩下一位就可以了。

不需要使用大数加法。

#include <stdio.h>
#include <string>
#include <iostream>
using std::cin;
using std::string;

int getRootDigit(int num)
{
	int root = num;
	while (root > 9)
	{
		root = 0;
		while (num)
		{
			root += num % 10;
			num /= 10;
		}
		num = root;
	}
	return root;
}

int main()
{
	string s;
	while (cin>>s)
	{
		if (s == "0") break;
		int num = 0;
		for (int i = 0; i < (int)s.size(); i++)
		{
			num += s[i] - '0';
		}
		printf("%d\n", getRootDigit(num));
	}
	return 0;
}

HDU 1013 Digital Roots 题解

时间: 2024-10-23 01:18:09

HDU 1013 Digital Roots 题解的相关文章

HDU 1013 Digital Roots

算法爱好者 HDU 1013 Digital Roots Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 29353    Accepted Submission(s): 8974Problem Description The digital root of a positive integer is foun

HDU 1013 Digital Roots(to_string的具体运用)

传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1013 Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 90108    Accepted Submission(s): 28027 Problem Description The digital root of a

HDU 1013 Digital Roots【字符串,水】

Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 79339    Accepted Submission(s): 24800 Problem Description The digital root of a positive integer is found by summing the digits of

HDU 1013 Digital Roots(两种方法,求数字根)

Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 67949    Accepted Submission(s): 21237 Problem Description The digital root of a positive integer is found by summing the digits of

HDU 1013.Digital Roots【模拟或数论】【8月16】

Digital Roots Problem Description The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits,

hdu 1013 Digital Roots 用一个大水题来纪念我进入杭电前一万名

Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 53090    Accepted Submission(s): 16577 Problem Description The digital root of a positive integer is found by summing the digits of

HDU 1013 Digital Roots(九余数定理)

Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 80782    Accepted Submission(s): 25278 Problem Description The digital root of a positive integer is found by summing the digits of

HDU 1013 Digital Roots(字符串,大数,九余数定理)

Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 79180    Accepted Submission(s): 24760 Problem Description The digital root of a positive integer is found by summing the digits of

HDU 1013 Digital Roots(水题)

Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 57919    Accepted Submission(s): 18100 Problem Description The digital root of a positive integer is found by summing the digits of