spring实现读写分离

(转自:http://www.cnblogs.com/surge/p/3582248.html)

现在大型的电子商务系统,在数据库层面大都采用读写分离技术,就是一个Master数据库,多个Slave数据库。Master库负责数据更新和实时数据查询,Slave库当然负责非实时数据查询。因为在实际的应用中,数据库都是读多写少(读取数据的频率高,更新数据的频率相对较少),而读取数据通常耗时比较长,占用数据库服务器的CPU较多,从而影响用户体验。我们通常的做法就是把查询从主库中抽取出来,采用多个从库,使用负载均衡,减轻每个从库的查询压力。

  采用读写分离技术的目标:有效减轻Master库的压力,又可以把用户查询数据的请求分发到不同的Slave库,从而保证系统的健壮性。我们看下采用读写分离的背景。

  随着网站的业务不断扩展,数据不断增加,用户越来越多,数据库的压力也就越来越大,采用传统的方式,比如:数据库或者SQL的优化基本已达不到要求,这个时候可以采用读写分离的策 略来改变现状。

  具体到开发中,如何方便的实现读写分离呢?目前常用的有两种方式:

  1 第一种方式是我们最常用的方式,就是定义2个数据库连接,一个是MasterDataSource,另一个是SlaveDataSource。更新数据时我们读取MasterDataSource,查询数据时我们读取SlaveDataSource。这种方式很简单,我就不赘述了。

  2 第二种方式动态数据源切换,就是在程序运行时,把数据源动态织入到程序中,从而选择读取主库还是从库。主要使用的技术是:annotation,Spring AOP ,反射。下面会详细的介绍实现方式。

   在介绍实现方式之前,我们先准备一些必要的知识,spring 的AbstractRoutingDataSource 类

     AbstractRoutingDataSource这个类 是spring2.0以后增加的,我们先来看下AbstractRoutingDataSource的定义:

    public abstract class AbstractRoutingDataSource extends AbstractDataSource implements InitializingBean  {}

    AbstractRoutingDataSource继承了AbstractDataSource ,而AbstractDataSource 又是DataSource 的子类。DataSource   是javax.sql 的数据源接口,定义如下:

public interface DataSource  extends CommonDataSource,Wrapper {

  /**
   * <p>Attempts to establish a connection with the data source that
   * this <code>DataSource</code> object represents.
   *
   * @return  a connection to the data source
   * @exception SQLException if a database access error occurs
   */
  Connection getConnection() throws SQLException;

  /**
   * <p>Attempts to establish a connection with the data source that
   * this <code>DataSource</code> object represents.
   *
   * @param username the database user on whose behalf the connection is
   *  being made
   * @param password the user‘s password
   * @return  a connection to the data source
   * @exception SQLException if a database access error occurs
   * @since 1.4
   */
  Connection getConnection(String username, String password)
    throws SQLException;

}

public interface DataSource  extends CommonDataSource,Wrapper {

  /**
   * <p>Attempts to establish a connection with the data source that
   * this <code>DataSource</code> object represents.
   *
   * @return  a connection to the data source
   * @exception SQLException if a database access error occurs
   */
  Connection getConnection() throws SQLException;

  /**
   * <p>Attempts to establish a connection with the data source that
   * this <code>DataSource</code> object represents.
   *
   * @param username the database user on whose behalf the connection is
   *  being made
   * @param password the user‘s password
   * @return  a connection to the data source
   * @exception SQLException if a database access error occurs
   * @since 1.4
   */
  Connection getConnection(String username, String password)
    throws SQLException;

}

  DataSource 接口定义了2个方法,都是获取数据库连接。我们在看下AbstractRoutingDataSource 如何实现了DataSource接口:

public Connection getConnection() throws SQLException {
        return determineTargetDataSource().getConnection();
    }

    public Connection getConnection(String username, String password) throws SQLException {
        return determineTargetDataSource().getConnection(username, password);
    }

public Connection getConnection() throws SQLException {
        return determineTargetDataSource().getConnection();
    }

    public Connection getConnection(String username, String password) throws SQLException {
        return determineTargetDataSource().getConnection(username, password);
    }

  很显然就是调用自己的determineTargetDataSource()  方法获取到connection。determineTargetDataSource方法定义如下:

protected DataSource determineTargetDataSource() {
        Assert.notNull(this.resolvedDataSources, "DataSource router not initialized");
        Object lookupKey = determineCurrentLookupKey();
        DataSource dataSource = this.resolvedDataSources.get(lookupKey);
        if (dataSource == null && (this.lenientFallback || lookupKey == null)) {
            dataSource = this.resolvedDefaultDataSource;
        }
        if (dataSource == null) {
            throw new IllegalStateException("Cannot determine target DataSource for lookup key [" + lookupKey + "]");
        }
        return dataSource;
    }

protected DataSource determineTargetDataSource() {
        Assert.notNull(this.resolvedDataSources, "DataSource router not initialized");
        Object lookupKey = determineCurrentLookupKey();
        DataSource dataSource = this.resolvedDataSources.get(lookupKey);
        if (dataSource == null && (this.lenientFallback || lookupKey == null)) {
            dataSource = this.resolvedDefaultDataSource;
        }
        if (dataSource == null) {
            throw new IllegalStateException("Cannot determine target DataSource for lookup key [" + lookupKey + "]");
        }
        return dataSource;
    }

 我们最关心的还是下面2句话:

    Object lookupKey = determineCurrentLookupKey();
        DataSource dataSource = this.resolvedDataSources.get(lookupKey);

determineCurrentLookupKey方法返回lookupKey,resolvedDataSources方法就是根据lookupKey从Map中获得数据源。resolvedDataSources 和determineCurrentLookupKey定义如下:

  private Map<Object, DataSource> resolvedDataSources;

  protected abstract Object determineCurrentLookupKey()

  看到以上定义,我们是不是有点思路了,resolvedDataSources是Map类型,我们可以把MasterDataSource和SlaveDataSource存到Map中,如下:

    key        value

    master             MasterDataSource

    slave                  SlaveDataSource

  我们在写一个类DynamicDataSource  继承AbstractRoutingDataSource,实现其determineCurrentLookupKey() 方法,该方法返回Map的key,master或slave。

  好了,说了这么多,有点烦了,下面我们看下怎么实现。

  上面已经提到了我们要使用的技术,我们先看下annotation的定义:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface DataSource {
    String value();
}
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface DataSource {
    String value();
}

我们还需要实现spring的抽象类AbstractRoutingDataSource,就是实现determineCurrentLookupKey方法:

public class DynamicDataSource extends AbstractRoutingDataSource {

    @Override
    protected Object determineCurrentLookupKey() {
        // TODO Auto-generated method stub
        return DynamicDataSourceHolder.getDataSouce();
    }

}

public class DynamicDataSourceHolder {
    public static final ThreadLocal<String> holder = new ThreadLocal<String>();

    public static void putDataSource(String name) {
        holder.set(name);
    }

    public static String getDataSouce() {
        return holder.get();
    }
}

public class DynamicDataSource extends AbstractRoutingDataSource {

    @Override
    protected Object determineCurrentLookupKey() {
        // TODO Auto-generated method stub
        return DynamicDataSourceHolder.getDataSouce();
    }

}

public class DynamicDataSourceHolder {
    public static final ThreadLocal<String> holder = new ThreadLocal<String>();

    public static void putDataSource(String name) {
        holder.set(name);
    }

    public static String getDataSouce() {
        return holder.get();
    }
}

从DynamicDataSource 的定义看出,他返回的是DynamicDataSourceHolder.getDataSouce()值,我们需要在程序运行时调用DynamicDataSourceHolder.putDataSource()方法,对其赋值。下面是我们实现的核心部分,也就是AOP部分,DataSourceAspect定义如下:

public class DataSourceAspect {

    public void before(JoinPoint point)
    {
        Object target = point.getTarget();
        String method = point.getSignature().getName();

        Class<?>[] classz = target.getClass().getInterfaces();

        Class<?>[] parameterTypes = ((MethodSignature) point.getSignature())
                .getMethod().getParameterTypes();
        try {
            Method m = classz[0].getMethod(method, parameterTypes);
            if (m != null && m.isAnnotationPresent(DataSource.class)) {
                DataSource data = m
                        .getAnnotation(DataSource.class);
                DynamicDataSourceHolder.putDataSource(data.value());
                System.out.println(data.value());
            }

        } catch (Exception e) {
            // TODO: handle exception
        }
    }
}

public class DataSourceAspect {

    public void before(JoinPoint point)
    {
        Object target = point.getTarget();
        String method = point.getSignature().getName();

        Class<?>[] classz = target.getClass().getInterfaces();

        Class<?>[] parameterTypes = ((MethodSignature) point.getSignature())
                .getMethod().getParameterTypes();
        try {
            Method m = classz[0].getMethod(method, parameterTypes);
            if (m != null && m.isAnnotationPresent(DataSource.class)) {
                DataSource data = m
                        .getAnnotation(DataSource.class);
                DynamicDataSourceHolder.putDataSource(data.value());
                System.out.println(data.value());
            }

        } catch (Exception e) {
            // TODO: handle exception
        }
    }
}

为了方便测试,我定义了2个数据库,shop模拟Master库,test模拟Slave库,shop和test的表结构一致,但数据不同,数据库配置如下:

<bean id="masterdataSource"
        class="org.springframework.jdbc.datasource.DriverManagerDataSource">
        <property name="driverClassName" value="com.mysql.jdbc.Driver" />
        <property name="url" value="jdbc:mysql://127.0.0.1:3306/shop" />
        <property name="username" value="root" />
        <property name="password" value="yangyanping0615" />
    </bean>

    <bean id="slavedataSource"
        class="org.springframework.jdbc.datasource.DriverManagerDataSource">
        <property name="driverClassName" value="com.mysql.jdbc.Driver" />
        <property name="url" value="jdbc:mysql://127.0.0.1:3306/test" />
        <property name="username" value="root" />
        <property name="password" value="yangyanping0615" />
    </bean>

        <beans:bean id="dataSource" class="com.air.shop.common.db.DynamicDataSource">
        <property name="targetDataSources">
              <map key-type="java.lang.String">
                  <!-- write -->
                 <entry key="master" value-ref="masterdataSource"/>
                 <!-- read -->
                 <entry key="slave" value-ref="slavedataSource"/>
              </map>  

        </property>
        <property name="defaultTargetDataSource" ref="masterdataSource"/>
    </beans:bean>

    <bean id="transactionManager"
        class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
        <property name="dataSource" ref="dataSource" />
    </bean>

    <!-- 配置SqlSessionFactoryBean -->
    <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
        <property name="dataSource" ref="dataSource" />
        <property name="configLocation" value="classpath:config/mybatis-config.xml" />
    </bean>

<bean id="masterdataSource"
        class="org.springframework.jdbc.datasource.DriverManagerDataSource">
        <property name="driverClassName" value="com.mysql.jdbc.Driver" />
        <property name="url" value="jdbc:mysql://127.0.0.1:3306/shop" />
        <property name="username" value="root" />
        <property name="password" value="yangyanping0615" />
    </bean>

    <bean id="slavedataSource"
        class="org.springframework.jdbc.datasource.DriverManagerDataSource">
        <property name="driverClassName" value="com.mysql.jdbc.Driver" />
        <property name="url" value="jdbc:mysql://127.0.0.1:3306/test" />
        <property name="username" value="root" />
        <property name="password" value="yangyanping0615" />
    </bean>

        <beans:bean id="dataSource" class="com.air.shop.common.db.DynamicDataSource">
        <property name="targetDataSources">
              <map key-type="java.lang.String">
                  <!-- write -->
                 <entry key="master" value-ref="masterdataSource"/>
                 <!-- read -->
                 <entry key="slave" value-ref="slavedataSource"/>
              </map>  

        </property>
        <property name="defaultTargetDataSource" ref="masterdataSource"/>
    </beans:bean>

    <bean id="transactionManager"
        class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
        <property name="dataSource" ref="dataSource" />
    </bean>

    <!-- 配置SqlSessionFactoryBean -->
    <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean">
        <property name="dataSource" ref="dataSource" />
        <property name="configLocation" value="classpath:config/mybatis-config.xml" />
    </bean>

  在spring的配置中增加aop配置

<!-- 配置数据库注解aop -->
    <aop:aspectj-autoproxy></aop:aspectj-autoproxy>
    <beans:bean id="manyDataSourceAspect" class="com.air.shop.proxy.DataSourceAspect" />
    <aop:config>
        <aop:aspect id="c" ref="manyDataSourceAspect">
            <aop:pointcut id="tx" expression="execution(* com.air.shop.mapper.*.*(..))"/>
            <aop:before pointcut-ref="tx" method="before"/>
        </aop:aspect>
    </aop:config>
    <!-- 配置数据库注解aop -->

<!-- 配置数据库注解aop -->
    <aop:aspectj-autoproxy></aop:aspectj-autoproxy>
    <beans:bean id="manyDataSourceAspect" class="com.air.shop.proxy.DataSourceAspect" />
    <aop:config>
        <aop:aspect id="c" ref="manyDataSourceAspect">
            <aop:pointcut id="tx" expression="execution(* com.air.shop.mapper.*.*(..))"/>
            <aop:before pointcut-ref="tx" method="before"/>
        </aop:aspect>
    </aop:config>
    <!-- 配置数据库注解aop -->

   下面是MyBatis的UserMapper的定义,为了方便测试,登录读取的是Master库,用户列表读取Slave库:

public interface UserMapper {
    @DataSource("master")
    public void add(User user);

    @DataSource("master")
    public void update(User user);

    @DataSource("master")
    public void delete(int id);

    @DataSource("slave")
    public User loadbyid(int id);

    @DataSource("master")
    public User loadbyname(String name);

    @DataSource("slave")
    public List<User> list();
}

public interface UserMapper {
    @DataSource("master")
    public void add(User user);

    @DataSource("master")
    public void update(User user);

    @DataSource("master")
    public void delete(int id);

    @DataSource("slave")
    public User loadbyid(int id);

    @DataSource("master")
    public User loadbyname(String name);

    @DataSource("slave")
    public List<User> list();
}

   好了,运行我们的Eclipse看看效果,输入用户名admin 登录看看效果

  

  

从图中可以看出,登录的用户和用户列表的数据是不同的,也验证了我们的实现,登录读取Master库,用户列表读取Slave库。

时间: 2024-08-10 19:38:03

spring实现读写分离的相关文章

java 使用spring实现读写分离

最近上线的项目中数据库数据已经临近饱和,最大的一张表数据已经接近3000W,百万数据的表也有几张,项目要求读数据(select)时间不能超过0.05秒,但实际情况已经不符合要求,explain建立索引,使用redis,ehcache缓存技术也已经满足不了要求,所以开始使用读写分离技术,可能以后数据量上亿或者更多的时候,需要再去考虑分布式数据库的部署,但目前来看,读写分离+缓存+索引+表分区+sql优化+负载均衡是可以满足亿级数据量的查询工作的,现在就一起来看一下亲测可用的使用spring实现读写

spring jpa 读写分离

本文主要解决基于spring data jpa读写分离. 思想:在dataSource做路由,根据事务判断使用主从数据源. 背景:spring+spring data jpa(hibernate jpa) 首先是jpa配置,时间有限在原基础上该的,既有java配置也有xml配置,见谅. 先声明EntityManager Xml代码   <!-- Jpa Entity Manager 配置 --> <bean id="entityManagerFactory" clas

spring实现读写分离aop注解方式

1.场景,实现数据库的读写分离. 2.思路,既然是读写分离,那就是需要切换不同的数据源,一种是静态切换,就是提前配置好两个静态数据库资源,还有一种就是动态的切换资源,这里用到spring,那就要知道spring如何动态的切换数据源. 3.spring提供了动态切换数据源接口AbstractRoutingDataSource,关于AbstractRoutingDataSource这个类我们可以看下它的源码 protected DataSource determineTargetDataSource

使用spring实现读写分离

1.  背景 我们一般应用对数据库而言都是"读多写少",也就说对数据库读取数据的压力比较大,有一个思路就是说采用数据库集群的方案, 其中一个是主库,负责写入数据,我们称之为:写库: 其它都是从库,负责读取数据,我们称之为:读库: 那么,对我们的要求是: 1.读库和写库的数据一致: 2.写数据必须写到写库: 3.读数据必须到读库: 2.  方案 解决读写分离的方案有两种:应用层解决和中间件解决. 2.1. 应用层解决: 优点: 1.多数据源切换方便,由程序自动完成: 2.不需要引入中间件

002-使用Spring实现读写分离(MySQL实现主从复制)

一. 背景 一般应用对数据库而言都是“读多写少”,也就说对数据库读取数据的压力比较大主库,负责写入数据,我们称之为:写库:从库,负责读取数据,我们称之为:读库: 1. 读库和写库的数据一致:2. 写数据必须写到写库:3. 读数据必须到读库: 二. 方案 解决读写分离的方案有两种:应用层解决和中间件解决. 2.1.应用层解决 优点: 1. 多数据源切换方便,由程序自动完成:2. 不需要引入中间件:3. 理论上支持任何数据库:缺点:1. 由程序员完成,运维参与不到:2. 不能做到动态增加数据源: 2

spring+mybatis利用interceptor(plugin)兑现数据库读写分离

使用spring的动态路由实现数据库负载均衡 系统中存在的多台服务器是“地位相当”的,不过,同一时间他们都处于活动(Active)状态,处于负载均衡等因素考虑,数据访问请求需要在这几台数据库服务器之间进行合理分配, 这个时候,通过统一的一个DataSource来屏蔽这种请求分配的需求,从而屏蔽数据访问类与具体DataSource的耦合: 系统中存在的多台数据库服务器现在地位可能相当也可能不相当,但数据访问类在系统启动时间无法明确到底应该使用哪一个数据源进行数据访问,而必须在系统运行期间通过某种条

基于spring的数据库读写分离

背景: Spring读写分离是大家都比较常见并一直在使用的技术. 本博文再次对其进行阐述,一方面是为了更好的分享给大伙,一方面也是对最近做"XXX系统"遇到的问题做一次整理.方便大家以后遇到类似问题可以很快解决.技术实现: 1.多数据源配置.配置包括一个主库master_dataSource,一个个从库slave_dataSource. 数据源托管给tomcat控制,系统通过jndi方式寻找.配置内容如下: <beans profile="production"

161920、使用Spring AOP实现MySQL数据库读写分离案例分析

一.前言 分布式环境下数据库的读写分离策略是解决数据库读写性能瓶颈的一个关键解决方案,更是最大限度了提高了应用中读取 (Read)数据的速度和并发量. 在进行数据库读写分离的时候,我们首先要进行数据库的主从配置,最简单的是一台Master和一台Slave(大型网站系统的话,当然会很复杂,这里只是分析了最简单的情况).通过主从配置主从数据库保持了相同的数据,我们在进行读操作的时候访问从数据库Slave,在进行写操作的时候访问主数据库Master.这样的话就减轻了一台服务器的压力. 在进行读写分离案

Spring配置动态数据源-读写分离和多数据源

在现在互联网系统中,随着用户量的增长,单数据源通常无法满足系统的负载要求.因此为了解决用户量增长带来的压力,在数据库层面会采用读写分离技术和数据库拆分等技术.读写分离就是就是一个Master数据库,多个Slave数据库,Master数据库负责数据的写操作,slave库负责数据读操作,通过slave库来降低Master库的负载.因为在实际的应用中,数据库都是读多写少(读取数据的频率高,更新数据的频率相对较少),而读取数据通常耗时比较长,占用数据库服务器的CPU较多,从而影响用户体验.我们通常的做法