逆元 - 组合数取模

现在目标是求$C_n^m\%p$,p为素数(经典p=1e9+7)

虽然有$C_n^m=\frac{n!}{m!(n-m)!}$,但由于取模的性质对于除法不适用,所以$C_n^m\%p$≠$( \frac{n!\%p}{m!\%p*(n-m)!\%p} )\%p$

所以需要把“除法”转换成“乘法”,才能借助取模的性质在不爆long long的情况下计算组合数。这时候就需要用到“逆元”!

  逆元:对于a和p,若a*b%p≡1,则称b为a%p的逆元。

那这个逆元有什么用呢?试想一下求$(\frac{a}{b})$%p,如果你知道b%p的逆元是c,那么就可以转变成$(\frac{a}{b})$%p = a*c%p = (a%p)(c%p)%p

那怎么求逆元呢?这时候就要引入强大的费马小定理!

  费马小定理:对于a和素数p,满足$a^{p-1}$%p≡1

接着因为$a^{p-1}$ = $a^{p-2}*a$,所以有$a^{p-2}*a$%p≡1!对比逆元的定义可得,$a^{p-2}$是a的逆元!

所以问题就转换成求解$a^{p-2}$,即变成求快速幂的问题了(当然这需要满足p为素数)。

现在总结一下求解$C_n^m\%p$的步骤:

  1. 通过循环,预先算好所有小于max_number的阶乘(%p)的结果,存到fac[max_number]里 (fac[i] = i!%p)
  2. 求m!%p的逆元(即求fac[m]的逆元):根据费马小定理,x%p的逆元为$x^{p-2}$,因此通过快速幂,求解$fac[m]^{p-2}$%p,记为M
  3. 求(n-m)!%p的逆元:同理为求解$fac[n-m]^{p-2}$%p,记为NM
  4. $C_n^m\%p$ = ((fac[n]*M)%p*NM)%p

代码和另一种求法以后有空再写...

时间: 2024-11-08 14:41:09

逆元 - 组合数取模的相关文章

组合数取模Lucas定理及快速幂取模

组合数取模就是求的值,根据,和的取值范围不同,采取的方法也不一样. 下面,我们来看常见的两种取值情况(m.n在64位整数型范围内) (1)  , 此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模. (2) ,   ,并且是素数 本文针对该取值范围较大又不太大的情况(2)进行讨论. 这个问题可以使用Lucas定理,定理描述: 其中 这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p. 已知C(n, m) mod p = n!/(m!(

hdu 3037 Saving Beans 组合数取模模板题。。

Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2707    Accepted Submission(s): 1014 Problem Description Although winter is far away, squirrels have to work day and night to save b

[BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 m 减去 Ai - 1 ,相当于将这一部分固定分给 xi,就转化为无限制的情况了. 如果有一些限制条件是 xi <= Ai 呢?直接来求就不行了,但是注意到这样的限制不超过 8 个,我们可以使用容斥原理来求. 考虑容斥:考虑哪些限制条件被违反了,也就是说,有哪些限制为 xi <= Ai 却是 xi

Lucas定理--大组合数取模 学习笔记

维基百科:https://en.wikipedia.org/wiki/Lucas%27_theorem?setlang=zh 参考:http://blog.csdn.net/pi9nc/article/details/9615359 http://hi.baidu.com/lq731371663/item/d7261b0b26e974faa010340f http://hi.baidu.com/j_mat/item/8e3a891c258c4fe9dceecaba 综合以上参考,我做的一下总结:

组合数取模终极版

以前讲述过很多组合数取模问题,详见:http://blog.csdn.net/acdreamers/article/details/8037918 今天,我们继续学习一些稍有难度的组合数取模问题,比如大组合数对合数取模,求大组合数的最后位数字等等. 首先来看组合数对合数取模问题 问题:求的值,其中和,并且是合数. 分析:先把素因子分解,然后转化为求,这里为素数,然后用CRT合并.所以现在重点来研究 如何求的值.这个问题AekdyCoin大神已经详细讲述了,如下链接     链接:http://h

排列组合+组合数取模 HDU 5894

1 // 排列组合+组合数取模 HDU 5894 2 // 题意:n个座位不同,m个人去坐(人是一样的),每个人之间至少相隔k个座位问方案数 3 // 思路: 4 // 定好m个人 相邻人之间k个座位 剩下就剩n-(m+1)*k个座位 5 // 剩下座位去插m个不同的盒子==就等价n个相同的球放m个不同的盒子 6 // 然后组合数出来了 7 // 乘n的话是枚举座位,除m是去掉枚举第一个座位的时候,剩下人相邻的座位相对不变的情况 8 9 #include <iostream> 10 #incl

大组合数取模之lucas定理模板,1&lt;=n&lt;=m&lt;=1e9,1&lt;p&lt;=1e6,p必须为素数

typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数 输入:C(n,m)%p 调用lucas(n,m,p) 复杂度:min(m,p)*log(m) ***********************************/ //ax + by = gcd(a,b) //传入固定值a,b.放回 d=gcd(a,b), x , y

toj 4111 组合数取模 暴力分解

题目大意:组合数取模,n和m并不算大,p比较大且是合数. 思路:暴力分解+快速幂 注:暴力也是有区别的,分解质因数时可以用以下work函数,写的非常巧妙,摘录自互联网. 1 #include <iostream> 2 #include <cstring> 3 using namespace std; 4 5 typedef long long ll; 6 const ll mod = 1ll << 32; 7 const int N = 1000001; 8 const

大组合数取模

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 考虑从(1,1)->(n,m)必定会向下走n-1步,向右走m-1步,那么总的走法是C(n-1+m-1,m-1). 关于组合数取模:大神博客:http://blog.csdn.net/acdreamers/article/details/8037918 1 #include <iostream> 2 #include <string.h> 3 #