HUD3689 Infinite monkey theorem

Infinite monkey theorem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1703    Accepted Submission(s): 883

Problem Description

Could you imaging a monkey writing computer programs? Surely monkeys are smart among animals. But their limited intelligence is no match for our human beings. However, there is a theorem about monkeys, and it states that monkeys can write everything if given enough time.
The theorem is called “Infinite monkey theorem”. It states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, which of course includes the programs you are about to write (All computer programs can be represented as text, right?).
It’s very easy to prove this theorem. A little calculation will show you that if the monkey types for an infinite length of time the probability that the output contains a given text will approach 100%.
However, the time used is too long to be physically reasonable. The monkey will not be able to produce any useful programs even if it types until the death of the universe. To verify this and ensure that our human beings are not replaceable by monkeys, you are to calculate the probability that a monkey will get things right.

Input

There will be several test cases.
Each test case begins with a line containing two integers n and m separated by a whitespace (2<=n<=26, 1<=m<=1000). n is the number of keys on the typewriter and the monkey will hit these keys m times. Thus the typewriter will finally produce an output of m characters.
The following n lines describe keys on the typewriter. Each line has a lower case letter and a real number separated by a whitespace. The letter indicates what the typewriter will produce if the monkey hits that key and the real number indicates the probability that the monkey will hit this key. Two hits of the monkey are independent of each other (Two different hits have the same probability for a same key), and sum of all the probabilities for each key is ensured to be 1.
The last line of the test case contains a word composed of lower case letters. The length of the word will be less than or equal to 10.
The input will end with a line of two zeros separated by a whitespace. This line should not be processed.

Output

For each test case, output one line containing the probability that the given word will appear in the typewriter’s output. The output should be in percentage format and numbers should be rounded to two digits after the decimal point.

Sample Input

4 10
w 0.25
o 0.25
r 0.25
d 0.25
word
2 10
a 1.0
b 0.0
abc
2 100
a 0.312345
b 0.687655
abab
0 0

Sample Output

2.73%
0.00%
98.54%

Source

2010 Asia Hangzhou Regional Contest

Recommend

lcy&zhengfeng   |   We have carefully selected several similar problems for you:  3682 3683 3685 3686 3687

题意:

  字符集中有cn个字符(最多26个),给出每个字符的出现概率(它们的和保证为1)

  再给出一个子串B

  求:任给一个长度为N的字符串A(只能包含字符集中的cn种字符),使得B是A的子串的概率。

  N<=1000

分析:

  动态规划+KMP
  想象一边随机生成字符串A,一边用KMP匹配字符串B的过程
  f[i][j]表示随机生成到第i位,此时B串匹配到第j位的概率
  枚举下一位生成字符c,设其生成概率为pc
  假设下一位填c,计算出KMP匹配指针j应该移动到now
  f[i+1][now] += f[i][j]*pc
  已经匹配到第m位的状态不再进行转移
  ans = ∑f[i][m]

#include<cstdio>
#include<cstring>
using namespace std;
const int N=1005;
int cn,n,m,fail[N];
char B[N],key[30];
double p[30],f[N][N];
void get_fail(){
    int p=0;fail[1]=0;
    for(int i=2;i<=m;i++){
        while(p>0&&B[i]!=B[p+1]) p=fail[p];
        if(B[i]==B[p+1]) p++;
        fail[i]=p;
    }
}
void dp(){
    memset(f,0,sizeof f);
    f[0][0]=1;
    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            for(int k=1;k<=cn;k++){
                int now=j;
                while(now>0&&key[k]!=B[now+1]) now=fail[now];
                if(key[k]==B[now+1]) now++;
                f[i+1][now]+=f[i][j]*p[k];
            }
        }
    }
    double ans=0;
    for(int i=1;i<=n;i++) ans+=f[i][m];
    ans*=100.0;
    printf("%.2lf%%\n",ans);
}
int main(){
    char s[3];
    while(scanf("%d%d",&cn,&n)==2){
        if(!cn&&!n) break;
        for(int i=1;i<=cn;i++){
            scanf("%s %lf",s,&p[i]);
            key[i]=s[0];
        }
        scanf("%s",B+1);
        m=strlen(B+1);
        get_fail();
        dp();
    }
    return 0;
}
时间: 2024-12-05 10:54:01

HUD3689 Infinite monkey theorem的相关文章

HDU 3689 Infinite monkey theorem [KMP DP]

Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1702 Accepted Submission(s): 882 Problem Description Could you imaging a monkey writing computer programs? Surely monkeys are

hdu 3689 杭州 10 现场 J - Infinite monkey theorem 概率dp kmp

J - Infinite monkey theorem Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 3689 Appoint description:  System Crawler  (2014-11-09) Description Could you imaging a monkey writing computer progra

hdu 3689 Infinite monkey theorem

TMD这些神奇的猴子... DP里面用KMP的next的数组来搞一搞,(不是很会,一开始想这样搞,然而思路很乱,就弃疗了,,,DP太虚了) 1 #include<bits/stdc++.h> 2 #define N 1000005 3 #define LL long long 4 #define inf 0x3f3f3f3f 5 using namespace std; 6 inline int ra() 7 { 8 int x=0,f=1; char ch=getchar(); 9 whil

HDU 3689 Infinite monkey theorem(KMP + DP)

题目链接:点击打开链接 思路: 用d[i][j]表示前i个字符,已经匹配了字母中的j个字符,最终包含这个字母的概率. 每次转移的时候有n个方向, 表示第i个字符选哪个字符, 那么有个问题, 如果我当前选的这个字符失配了, 那么转移之后我还匹配了多少个字符. 这恰恰是KMP能做的. 细节参见代码: #include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #inc

[HDU 3689]Infinite monkey theorem (KMP+概率DP)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3689 黄老师说得对,题目只有做wa了才会有收获,才会有提高. 题意:一个猴子敲键盘,键盘上有n个键,猴子敲第i个键的概率是p[i],问敲m次后形成的字符串里出现给定串的概率是多少. 这实际上就跟那个ac自动机转为trie图然后dp一样的. 类似的题目有POJ 2778,这篇题解不错:http://blog.csdn.net/luyuncheng/article/details/8643001 只不过

[AC自动机+概率dp] hdu 3689 Infinite monkey theorem

题意: 给n个字母,和m次数. 然后输入n个字母出现的概率 然后再给一个目标串str 然后问m次中敲出目标串的概率是多少. 思路: AC自动机+概率dp的简单题. 首先建立trie图,然后就是状态转移了 dp版本: dp三重循环变量次数,节点数,和字母数 代码: #include"cstdlib" #include"cstdio" #include"cstring" #include"cmath" #include"

●HDU 3689 Infinite monkey theorem

题链: http://acm.hdu.edu.cn/showproblem.php?pid=3689题解: KMP,概率dp (字符串都从1位置开始) 首先对模式串S建立next数组. 定义dp[i][j]表示猴子打的串长度为i,且该串的后缀与模式串最多匹配到j位置的概率. 显然dp[0][0]=1, 考虑如何转移: 枚举下一个打出的字符为c,然后用kmp的next数组找到模式串中可以继续匹配的位置k. 即:k=j+1; while(k&&S[k]!=c) k=next[k]; 然后将dp

linux-kernel/CodingStyle

https://www.kernel.org/doc/Documentation/zh_CN/CodingStyle Chinese translated version of Documentation/CodingStyle If you have any comment or update to the content, please post to LKML directly.However, if you have problem communicating in English yo

[转] LINUX内核代码编程规范

这是一个简短的文档,描述了linux内核的首选代码风格.代码风格是因人而异的,而且我 不愿意把我的观点强加给任何人,不过这里所讲述的是我必须要维护的代码所遵守的风格, 并且我也希望绝大多数其他代码也能遵守这个风格.请在写代码时至少考虑一下本文所述的 风格. 首先,我建议你打印一份GNU代码规范,然后不要读它.烧了它,这是一个具有重大象征性 意义的动作. 不管怎样,现在我们开始: 第一章:缩进 制表符是8个字符,所以缩进也是8个字符.有些异端运动试图将缩进变为4(乃至2)个字符 深,这几乎相当于尝