hdu 1695 GCD(莫比乌斯入门)

题意:求a<=x<=b ,x<=y<=d,中gcd(x,y)==k的数对个数

思路:题目可以转化成求1<=x<=b/k,1<=y<=d/k中gcd(x,y)=1的数对的个数

我们设f(d)表示恰好gcd(x,y)==d的个数,F(d)表示gcd为d的倍数的数对个数

F(n)=∑d|nf(d)=> f(d)=∑d|nu(d)F(n/d)

令p=b/k q=d/k

F(d)的计算十分简单 floor(p/d)*floor(q/d)

再利用线性筛法求莫比乌斯即可

由于题目要求(1,2)和(2,1)是一样的,所以要去掉重复的(来源见水印)

代码:

#include <iostream>
#include <cstring>
#define ll long long

using namespace std;

const int maxn=100005;
bool check[maxn+10];
int prime[maxn+10],mu[maxn+10],sum[maxn+10];

void Mublus()
{
    memset(check,false,sizeof(check));
    mu[1]=1;
    int tot=0;
    for(int i=2;i<=maxn;i++)
    {
        if(check[i]==false)
        {
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++)
        {
            if(i*prime[j]>maxn) break;
            check[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else
            {
                mu[i*prime[j]]=-mu[i];
            }
        }
    }
}

int main()
{
    int t,cas=1;
    Mublus();
    cin>>t;
    while(t--)
    {
        int a,b,c,d,k;
        cin>>a>>b>>c>>d>>k;
        cout<<"Case "<<cas++<<": ";
        if(k==0)
        {
            cout<<"0"<<endl;
            continue;
        }
        b=b/k;
        d=d/k;
        if(b>d) swap(b,d);
        ll ans,rep;
        ans=0;
        rep=0;
        for(int i=1;i<=b;i++)
        {
            ans+=(ll)mu[i]*(b/i)*(d/i);
            rep+=(ll)mu[i]*(b/i)*(b/i);
        }
        ans=ans-rep/2;
        cout<<ans<<endl;
    }
    return 0;
}
时间: 2024-10-24 04:33:43

hdu 1695 GCD(莫比乌斯入门)的相关文章

HDU 1695 GCD 莫比乌斯第二发

题意:求[1,b]和[1,d]内公约数为k的对数(错了N发之后才看到a和c为1...) 解一:容斥原理和欧拉函数 http://www.cnblogs.com/kuangbin/p/3269182.html 参考大神的文章吧,我没写=-= 解二:莫比乌斯 设f[x]为GCD(a,b)=k的对数 F[x]为k|x的对数 所以b,d均除k就是求所有GCD为1的对数 sum+=sigema(mu[i]*(b/i)*(d/i)) #include <stdio.h> #include <stri

hdu 1695 GCD 莫比乌斯

GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9765    Accepted Submission(s): 3652 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)

HDU 1695 GCD 欧拉函数+容斥原理+质因数分解

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a <= b <= 100000, c=1, c <= d <= 100000, 0 <= k <= 100000) 思路:因为x与y的最大公约数为k,所以xx=x/k与yy=y/k一定互质.要从a/k和b/k之中选择互质的数,枚举1~b/k,当选择的yy小于等于a/k时,可以

HDU 1695 GCD (数论-整数和素数,组合数学-容斥原理)

GCD Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output t

HDU 1695 GCD (莫比乌斯反演)

传送门 GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9749    Accepted Submission(s): 3648 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a-b, y in c-d that GCD(x, y)

HDU 1695 GCD(莫比乌斯反演)

[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1695 [题目大意] 求出区间[1,b][1,d]中公约数为k的对数,重复的对数只计算一次. [题解] 我们将b和d调整成b<=d,题目转化为[1,b/k][1,d/k]中互质的数对数,由于重复的对数只计算一次,因此需要再计算一次[1,b/k][1,b/k],用原先答案减去计算出的一半就是答案. [代码] #include <cstdio> #include <algorithm&g

HDU 1695 GCD 【莫比乌斯反演例题】

GCDTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4291 Accepted Submission(s): 1502   Problem DescriptionGiven 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k.

莫比乌斯二连 HDU 5212 Code &amp; HDU 1695 GCD

莫比乌斯的模板题 都是差不多的 F(m)为gcd(i,j) = m(i∈[1,m],j∈[1,n])的个数 f(m) = ∑(m\d) F(d)  意义为gcd(i,j)为m的倍数的个数 运用莫比乌斯反演得到 F(m) = ∑(m\d)μ(d/m) * f(d) #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std;

HDU 1695 GCD(容斥 or 莫比乌斯反演)

这题可以用容斥做,然而效率并不高.. 于是学了下莫比乌斯反演(资料百度找) 求出mo数组后 设f(x)为gcd为x的种数 F(x)为gcd为x倍数的种数 那么显然F(x) = (b / x) * (d / x) 莫比乌斯反演之后,得到f(x) = sum(mo[i] * F(i)). 然后还要容斥减去对称重复的.对称重复的情况为min(b, d)小的中,求一遍除2,(因为存在x = y的情况只有(1,1)一种) 最后还要注意特判下k == 0的情况 代码: #include <cstdio>