Spark ML 文本的分类

最近一直在研究Spark的分类算法,因为我们是做日志文本分类,在官网和各大网站一直没找到相应的Demo,经过1个多月的研究,终于有点成效。

def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("DecisionTree1").setMaster("local[2]")

    val sc = new SparkContext(sparkConf)
    // Load documents (one per line).

    val documents: RDD[Seq[String]] = sc.textFile("/XXX/sample_libsvm_data.txt").map(_.split(" ").toSeq)

    val hashingTF = new HashingTF()
    val tf: RDD[Vector] = hashingTF.transform(documents)

    // Filter the top 50 features from each feature vector
    val data = tf.map { lp =>
      LabeledPoint(lp(0), Vectors.dense((lp.toArray).tail))
    }

    val splits = data.randomSplit(Array(0.9, 0.1))
    val (trainingData, testData) = (splits(0), splits(1))

    // Train a DecisionTree model.
    //  Empty categoricalFeaturesInfo indicates all features are continuous.
    val numClasses = 2
    val categoricalFeaturesInfo = Map[Int, Int]()
    val impurity = "gini"
    val maxDepth = 5
    val maxBins = 32

    val model = DecisionTree.trainClassifier(trainingData, numClasses, categoricalFeaturesInfo,
      impurity, maxDepth, maxBins)

    // Evaluate model on test instances and compute test error

    val testStr = Array("y z a c")

    val prediction = model.predict(hashingTF.transform(testStr))

    println("-----------------------------------------")
    println(prediction)
    println("-----------------------------------------")
  }

样例数据:

0 a b c d
1 e f g h
1 i j k l
1 m n o p
1 r s t u
0 q v w x
1 y z a b
1 c d e f
0 a b y z 

Classification算法只支持Double类型,其实我们的核心就是怎么把字符串转成Double型的向量,在Spark1.3.0版本中有 HashingTF 来做转化,就发现程序很简单了。

时间: 2024-10-11 21:14:09

Spark ML 文本的分类的相关文章

Spark ML下实现的多分类adaboost+naivebayes算法在文本分类上的应用

1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c

Spark ML Pipeline简介

Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在代码实现的级别管理好每一个处理步骤之间的先后运行关系,极大地简化了开发机器学习应用的难度.        Spark ML Pipeline使用DataFrame作为机器学习输入输出数据集的抽象.DataFrame来自Spark SQL,表示对数据集的一种特殊抽象,它也是Dataset(它是Spar

Spark ML机器学习库评估指标示例

本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估

Spark ml pipeline - transforming feature - StringIndexer

在spark ml pipeline的特征提取和转换阶段,有一种transformer可以将机器学习训练数据中常见的字符串列(例如表示各种分类)转换为数值索引列,以便于计算机处理.它就是StringIndexer.它支持的索引范围为[0, numLabels)(不支持的会编码为numLabels),并且支持四种排序方式,frequencyDesc(频率最高的索引赋值为0),frequencyAsc,alphabetDesc,alphabetAsc. 假设我们有dataframe id | cat

【机器学习实验】使用朴素贝叶斯进行文本的分类

引言 朴素贝叶斯由贝叶斯定理延伸而来的简单而强大的概率模型,它根据每个特征的概率确定一个对象属于某一类别的概率.该方法基于一个假设,所有特征需要相互独立,即任一特征的值和其他特征的值没有关联关系. 虽然这种条件独立的假设在许多应用领域未必能很好满足,甚至是不成立的.但这种简化的贝叶斯分类器在许多实际应用中还是得到了较好的分类精度.训练模型的过程可以看作是对相关条件概率的计算,它可以用统计对应某一类别的特征的频率来估计. 朴素贝叶斯最成功的一个应用是自然语言处理领域,自然语言处理的的数据可以看做是

spark ml 的例子

一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习

文本情感分类:传统模型(1)

基于情感词典的文本情感分类 传统的基于情感词典的文本情感分类,是对人的记忆和判断思维的最简单的模拟,如上图.我们首先通过学习来记忆一些基本词汇,如否定词语有"不",积极词语有"喜欢"."爱",消极词语有"讨厌"."恨"等,从而在大脑中形成一个基本的语料库.然后,我们再对输入的句子进行最直接的拆分,看看我们所记忆的词汇表中是否存在相应的词语,然后根据这个词语的类别来判断情感,比如"我喜欢数学&quo

Extending sparklyr to Compute Cost for K-means on YARN Cluster with Spark ML Library

Machine and statistical learning wizards are becoming more eager to perform analysis with Spark MLlibrary if this is only possible. It’s trendy, posh, spicy and gives the feeling of doing state of the art machine learning and being up to date with th

NLP文本情感分类

文本情感分类: 文本情感分类(一):传统模型 http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作 分词工具 测试结果 结巴中文分词 工信处/ 女干事/ 每月/ 经过/ 下属/ 科室/ 都/ 要/ 亲口/ 交代/ 24/ 口/ 交换机/ 等/ 技术性/ 器件/ 的/ 安装/ 工作 中科院分词 工/n 信/n 处女/n 干事/n 每月/r 经过/p 下属/v 科室/n 都/d