原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learned developing a practical large scale machine learning system Tuesday, April 06, 2010 Posted by Simon Tong, Google Research When faced with a hard pre
http://blog.csdn.net/pipisorry/article/details/44904649 机器学习Machine Learning - Andrew NG courses学习笔记 Large Scale Machine Learning大规模机器学习 Learning With Large Datasets大数据集学习 Stochastic Gradient Descent随机梯度下降 Mini-Batch Gradient Descent迷你批处理梯度下降 Stochas
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Google . 摘要:众所周
In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a larg
参考资料: Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification,Andrea Frome etc. 昨晚总结完就睡着了,今天不知道为什么手欠给拉到废纸篓里面还强迫症上身把废纸篓清空了,哎,终于写回来了,都快被自己蠢哭了=.=
Gradient Descent with Large Datasets Learning With Large Datasets 我们已经知道,得到一个高效的机器学习系统的最好的方式之一是,用一个低偏差(low bias)的学习算法,然后用很多数据来训练它. 下面是一个区分混淆词组的例子: 但是,大数据存在一个问题,当样本容量m=1,000时还行,但是当m=100,000,000呢?请看一下梯度下降的更新公式: 计算一个θ值需要对1亿个数据进行求和,计算量显然太大,所以时间消耗肯定也就大了.