增强学习(一) ----- 基本概念

机器学习算法大致可以分为三种:

1. 监督学习(如回归,分类)

2. 非监督学习(如聚类,降维)

3. 增强学习

什么是增强学习呢?

增强学习(reinforcementlearning, RL)又叫做强化学习,是近年来机器学习和智能控制领域的主要方法之一。

定义: Reinforcement learning is learning what to do ----how to map situations to actions ---- so as to maximize a numerical reward signal.[1]

也就是说增强学习关注的是智能体如何在环境中采取一系列行为,从而获得最大的累积回报。

通过增强学习,一个智能体应该知道在什么状态下应该采取什么行为。RL是从环境状态到动作的映射的学习,我们把这个映射称为策略。

那么增强学习具体解决哪些问题呢,我们来举一些例子:

例1. flappy bird是现在很流行的一款小游戏,不了解的同学可以点链接进去玩一会儿。现在我们让小鸟自行进行游戏,但是我们却没有小鸟的动力学模型,也不打算了解它的动力学。要怎么做呢? 这时就可以给它设计一个增强学习算法,然后让小鸟不断的进行游戏,如果小鸟撞到柱子了,那就获得-1的回报,否则获得0回报。通过这样的若干次训练,我们最终可以得到一只飞行技能高超的小鸟,它知道在什么情况下采取什么动作来躲避柱子。

例2. 假设我们要构建一个下国际象棋的机器,这种情况不能使用监督学习,首先,我们本身不是优秀的棋手,而请象棋老师来遍历每个状态下的最佳棋步则代价过于昂贵。其次,每个棋步好坏判断不是孤立的,要依赖于对手的选择和局势的变化。是一系列的棋步组成的策略决定了是否能赢得比赛。下棋过程的唯一的反馈是在最后赢得或是输掉棋局时才产生的。这种情况我们可以采用增强学习算法,通过不断的探索和试错学习,增强学习可以获得某种下棋的策略,并在每个状态下都选择最有可能获胜的棋步。目前这种算法已经在棋类游戏中得到了广泛应用。

可以看到,增强学习和监督学习的区别主要有以下两点:

1.  增强学习是试错学习(Trail-and-error),由于没有直接的指导信息,智能体要以不断与环境进行交互,通过试错的方式来获得最佳策略。

2.  延迟回报,增强学习的指导信息很少,而且往往是在事后(最后一个状态)才给出的,这就导致了一个问题,就是获得正回报或者负回报以后,如何将回报分配给前面的状态。

增强学习是机器学习中一个非常活跃且有趣的领域,相比其他学习方法,增强学习更接近生物学习的本质,因此有望获得更高的智能,这一点在棋类游戏中已经得到体现。Tesauro(1995)描述的TD-Gammon程序,使用增强学习成为了世界级的西洋双陆棋选手。这个程序经过150万个自生成的对弈训练后,已经近似达到了人类最佳选手的水平,并在和人类顶级高手的较量中取得40 盘仅输1盘的好成绩。

下篇我们正式开始学习增强学习,首先介绍一下马尔可夫决策过程。

参考资料:

[1] R.Sutton et al. Reinforcement learning: An introduction , 1998

[2] T.Mitchell. 《机器学习》,2003

[3] Andrew Ng.CS229: Machine learning  Lecture notes

时间: 2024-11-04 09:44:08

增强学习(一) ----- 基本概念的相关文章

增强学习的基本概念(2)

对于增强学习的控制问题,有两个著名的基础算法:Sarsa.Q-Learning (1) Sarsa 算法流程:  对于所有状态 s 以及动作 a 进行任意初始化,将所有终止状态的 Value-Action 值设为0 迭代每一训练集episode: 初始化状态 S 根据策略Q,按照当前的状态 S,选择动作 A(如:小概率-贪婪算法) 迭代训练集的每一步: 采取动作A, 观察奖励值 R 和下一步状态 S' 根据策略Q,按照下一状态 S',选择动作 A'(如:小概率-贪婪算法) Q(S,A) := Q

增强学习 | Q-Learning

"价值不是由一次成功决定的,而是在长期的进取中体现" 上文介绍了描述能力更强的多臂赌博机模型,即通过多台机器的方式对环境变量建模,选择动作策略时考虑时序累积奖赏的影响.虽然多臂赌博机模型中引入了价值的概念,但方法在建模过程中本质上是以策略为优化目标,因此又常被归为基于策略的增强学习方法. 此外,增强学习方法还有基于价值以及基于模型两类主要方法.本文介绍第二类,先从描述价值目标的Q函数开始,它也常称之为Q-Learning方法. 最简单的Q函数可用"状态-动作"二维表

增强学习 | 多臂赌博机模型

探索的终点是真理 上文介绍了了增强学习的基本框架,一个完整的增强学习框架包括状态.动作.回报.环境等基本概念,其对应的任务问题有三个主要特点: 不同的动作会有不同的回报: 回报是随时间延迟累积的: 行动回报与环境状态是相关的. 对于一些简单的增强学习任务,往往并不需要满足特点2和特点3,将这类问题称为多臂赌博机模型.它来源于赌场的多臂赌博机,即按下不同的臂会有不同额度的奖励.假设有一个Agent能够不断进行尝试找到奖励最大的臂,即建立学习函数,直接将观察状态映射为行动. 学习的最优函数将直接对应

(转) 深度增强学习与通用人工智能

深度增强学习前沿算法思想 CSDN 作者: Flood Sung 2017-02-16 09:34:29 举报 阅读数:3361 作者: Flood Sung,CSDN博主,人工智能方向研究生,专注于深度学习,增强学习与机器人的研究. 责编:何永灿,欢迎人工智能领域技术投稿.约稿.给文章纠错,请发送邮件至[email protected]本文为<程序员>原创文章,未经允许不得转载,更多精彩文章请订阅2017年<程序员>? 2016年AlphaGo计算机围棋系统战胜顶尖职业棋手李世石

ETL学习笔记之概念篇

导读:ETL,Extraction-Transformation-Loading的缩写,即数据抽取(Extract).转换(Transform).装载(Load)的过程,它是构建数据仓库的重要环节. 关键词:ETL 数据仓库 OLTP OLAP ETL,Extraction-Transformation-Loading的缩写,即数据抽取(Extract).转换(Transform).装载(Load)的过程,它是构建数据仓库的重要环节. ETL是将业务系统的数据经过抽取.清洗转换之后加载到数据仓库

【转载】增强学习(Reinforcement Learning and Control)

增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行拟合.分类.聚类或者降维等操作.然而对于很多序列决策或者控制问题,很难有这么规则的样本.比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向. 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式

增强学习 | AlphaGo背后的秘密

"敢于尝试,才有突破" 2017年5月27日,当今世界排名第一的中国棋手柯洁与AlphaGo 2.0的三局对战落败.该事件标志着最新的人工智能技术在围棋竞技领域超越了人类智能,借此机会,介绍一下AlphaGo背后的秘密--增强学习技术. 增强学习(Reinforcement Learning),也称强化学习,是一种在过程中学习提高机器智能的框架.该框架通常可用马尔可夫决策过程(Markov Decision Process)概念来描述,即假设存在智能体(Agent)在约束环境下执行某动

Multi-armed Bandit Problem与增强学习的联系

选自<Reinforcement Learning: An Introduction>, version 2, 2016, Chapter2 https://webdocs.cs.ualberta.ca/~sutton/book/bookdraft2016sep.pdf 引言中是这样引出Chapter2的: One of the challenges that arise in reinforcement learning, and not in other kinds of learning

增强学习Reinforcement Learning经典算法梳理2:蒙特卡洛方法

1 前言 在上一篇文章中,我们介绍了基于Bellman方程而得到的Policy Iteration和Value Iteration两种基本的算法,但是这两种算法实际上很难直接应用,原因在于依然是偏于理想化的两个算法,需要知道状态转移概率,也需要遍历所有的状态.对于遍历状态这个事,我们当然可以不用做到完全遍历,而只需要尽可能的通过探索来遍及各种状态即可.而对于状态转移概率,也就是依赖于模型Model,这是比较困难的事情. 什么是状态转移?就比如一颗子弹,如果我知道它的运动速度,运动的当前位置,空气