ID3算法

ID3算法是J. Ross Quinlan在1975提出的分类预测算法,当时还没有数据挖掘吧,哈哈哈。该算法的核心是“信息熵”,属于数学问题,我也是从这里起发现数据挖掘最底层最根本的不再是编程了,而是数学,编程只是一种实现方式而已,数学才是基础,如:朴素贝叶斯分类,小波聚类,尤其是我正在搞的支持向量机,它就是高等代数,空间解析几何,概率统计的综合应用。记得读本科时,朱琛学姐说过,数学学得再好也不为过。我现在深刻体会到了。

信息熵就是一组数据包含的信息,概率的度量。一组数据越有序信息熵也就越低,极端时如果一组数据中只有一个非0,其它都是0,那么熵等于0,因为只有可能是这个非0的情况发生,它给人们的信息已经确定了,或者说不含有任何信息了,因为信息熵含量为0。一组数据越无序信息熵也就越高,极端时如果一组数据均匀分布,那么它的熵最大,因为我们不知道那种情况发生的概率大些。假如一组数据由{d1,d2,...,dn}构成,其和是sum,那么求信息熵的公式是

分类预测算法属于有指导学习,方法是通过训练数据,按照参考属性对目标属性的依赖程度对参考属性分级别处理,这种分级别处理体现在创建决策树,目的是通过生成的判别树,产生规则,用来判断以后的数据。以如下数据为例:


共14条记录,目标属性是,是否买电脑,共有两个情况,yes或者no。参考属性有4种情况,分别是,age,income,student,credit_rating。属性age有3种取值情况,分别是,youth,middle_aged,senior,属性income有3种取值情况,分别是,high,medium,low,属性student有2种取值情况,分别是,no,yes,属性credit_rating有2种取值情况,分别是fair,excellent。我们先求参考属性的信息熵:

,式中的5表示5个no,9表示9个yes,14是总的记录数。接下来我们求各个参考属性在取各自的值对应目标属性的信息熵,以属性age为例,有3种取值情况,分别是youth,middle_aged,senior,先考虑youth,youth共出现5次,3次no,2次yes,于是信息熵:
类似得到middle_aged和senior的信息熵,分别是:0和0.971。整个属性age的信息熵应该是它们的加权平均值:

。下面引入信息增益(information gain)这个概念,用Gain(D)表示,该概念是指信息熵的有效减少量,该量越高,表明目标属性在该参考属性那失去的信息熵越多,那么该属性越应该在决策树的上层(如果不好理解,可以用极限的方法,即假如在age属性上,当为youth时全部是on,当为middle时也全部是no,当为senior时全不是yes,那么Hage(D)=0)。,类似可以求出Gain(income)=0.029,Gain(stduent)=0.151,Gain(credit_rating)=0.048。最大值为Gain(age),所以首先按照参考属性age,将数据分为3类,如下:

然后分别按照上面的方法递归的分类。递归终止的条件是,1,当分到某类时,目标属性全是一个值,如这里当年龄取middle_aged时,目标属性全是yes。2,当分到某类时,某个值的比例达到了给定的阈值,如这里当年龄取youth时,有60%的是no,当然实际的阈值远远大于60%。

ID3算法有很多变种,但是基本思想不变。但是它很可能需要多次遍历数据库,效率不高,不然朴素贝叶斯分类。

转自:http://blog.sina.com.cn/s/blog_6e85bf420100ohma.html

时间: 2025-01-08 22:03:32

ID3算法的相关文章

决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)

1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? 一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢. 女儿:那好,我去见见. 决策过程: 这个女孩的决策过程就是典型的分类树决策.

ID3算法(Java实现)

数据存储文件:buycomputer.properties #数据个数 datanum=14 #属性及属性值 nodeAndAttribute=年龄:青/中/老,收入:高/中/低,学生:是/否,信誉:良/优,归类:买/不买 #数据 D1=青,高,否,良,不买 D2=青,高,否,优,不买 D3=中,高,否,良,买 D4=老,中,否,良,买 D5=老,低,是,良,买 D6=老,低,是,优,不买 D7=中,低,是,优,买 D8=青,中,否,良,不买 D9=青,低,是,良,买 D10=老,中,是,良,买

决策树ID3算法的java实现(基本试用所有的ID3)

已知:流感训练数据集,预定义两个类别: 求:用ID3算法建立流感的属性描述决策树 流感训练数据集 No. 头痛 肌肉痛 体温 患流感 1 是(1) 是(1) 正常(0) 否(0) 2 是(1) 是(1) 高(1) 是(1) 3 是(1) 是(1) 很高(2) 是(1) 4 否(0) 是(1) 正常(0) 否(0) 5 否(0) 否(0) 高(1) 否(0) 6 否(0) 是(1) 很高(2) 是(1) 7 是(1) 否(0) 高(1) 是(1) 原理分析: 在决策树的每一个非叶子结点划分之前,先

转载:ID3算法

ID3算法 ID3算法是J. Ross Quinlan在1975提出的分类预测算法.该算法的核心是“信息熵”. 信息熵就是一组数据包含的信息,概率的度量.一组数据越有序信息熵也就越低,极端时如果一组数据中只有一个非0,其它都是0,那么熵等于0,因为只有可能是这个非0的情况发生,它给人们的信息已经确定了,或者说不含有任何信息了,因为信息熵含量为0.一组数据越无序信息熵也就越高,极端时如果一组数据均匀分布,那么它的熵最大,因为我们不知道那种情况发生的概率大些.假如一组数据由{d1,d2,...,dn

决策树ID3算法[分类算法]

ID3分类算法的编码实现 1 <?php 2 /* 3 *决策树ID3算法(分类算法的实现) 4 */ 5 6 /* 7 *把.txt中的内容读到数组中保存 8 *$filename:文件名称 9 */ 10 11 //-------------------------------------------------------------------- 12 function gerFileContent($filename) 13 { 14 $array = array(NULL); 15

数据挖掘之决策树算法ID3算法的相关原理

ID3决策树:针对属性选择问题,是决策树算法中最为典型和最具影响力的决策树算法. ID3决策树算法使用信息增益度作为选择测试属性. 其中p(ai) 表示ai 发生的概率. 假设有n个互不相容的事件a1,a2,a3,-.,an,它们中有且仅有一个 发生,则其平均的信息量可如下度量: 对数底数可以为任何数,不同的取值对应了熵的不同单位. 通常取2,并规定当p(ai)=0时 =0 Entropy(S,A)=∑(|Sv|/|S|)* Entropy(Sv)公式2 以去不去打羽毛球为例子 A:属性:out

ID3算法Java实现

ID3算法java实现 1 ID3算法概述 1.1 信息熵 熵是无序性(或不确定性)的度量指标.假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn).那信息熵定义为: 通常以2为底数.所以信息熵的单位是bit. 1.2 决策树 决策树是以实例为基础的归纳学习算法.它从一组无次序.无规则的元组中推理出决策树表示形式的分类规则.它採用自顶向下的递归方式.在决策树的内部结点进行属性值的比較,并依据不同的属性值从该结点向下分支,叶结点是要学习划分的类.从根

决策树的基本ID3算法

一  ID3算法的大致思想 基本的ID3算法是通过自顶向下构造决策树来进行学习的.我们首先思考的是树的构造从哪里开始,这就涉及到选择属性进行树的构造了,那么怎样选择属性呢?为了解决这个问题,我们使用统计测试来确定每一个实例属性单独分类训练样例的能力,把分类能力最好的属性作为树根节点的测试.然后为根节点属性的每个可能值产生一个分支,并把训练样例排列到适当的分支之下.然后重复整个过程,用每个分支节点关联的训练样例来选取在该点被测试的最佳属性.这形成了对合格决策树的贪婪搜索,也就是算法从不回溯重新考虑

决策树 -- ID3算法小结

ID3算法(Iterative Dichotomiser 3 迭代二叉树3代),是一个由Ross Quinlan发明的用于决策树的算法:简单理论是越是小型的决策树越优于大的决策树. 算法归纳: 1.使用所有没有使用的属性并计算与之相关的样本熵值: 2.选取其中熵值最小的属性 3.生成包含该属性的节点 4.使用新的分支表继续前面步骤 ID3算法以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类:所以归根结底,是为了从一堆数据中生成决策树而采取的一种归纳方式: 具体介绍: 1.信

决策树ID3算法的java实现

决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分.比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳嗽等症状细分你是否为病毒性感冒等等.决策树的过程其实也是基于极大似然估计.那么我们用一个什么标准来衡量某个特征是权重最大的呢,这里有信息增益和基尼系数两个.ID3算法采用的是信息增益这个量. 根据<统计学习方法>中的描述,G(D,A)表示数据集D在特征A的划分下的信息增益.具体公式: G(D,A)