采用栈数据结构的二叉树遍历

  【前言】树的遍历,根据访问自身和其子节点之间的顺序关系,分为前序,后序遍历。对于二叉树,每个节点至多有两个子节点(特别的称为左,右子节点),又有中序遍历。由于树自身具有的递归性,这些遍历函数使用递归函数很容易实现,代码也非常简洁。借助于数据结构中的栈,可以把树遍历的递归函数改写为非递归函数。

  在这里我思考的问题是,很显然,循环可以改写为递归函数。递归函数是否借助栈这种数据结构改写为循环呢。因为函数调用中,call procedure stack 中存储了流程的 context,调用和返回相当于根据调用栈中的 context 进行跳转。而采用 stack 数据结构时,主要还是一个顺序循环结构,主要通过 continue 实现流程控制。

  首先,给出遍历二叉树的序的定义:

  (1)前序遍历:当前节点,左子节点,右子节点;

  (2)中序遍历:左子节点,当前节点,右子节点;

  (3)后序遍历:左子节点,右子节点,当前节点。

  对二叉查找树 BST 来说,中序遍历的输出,是排序结果。所以这里我以一个 BST 的中序遍历为主要例子说明问题。一个简单的 BST 如下图所示:

  

  其中序遍历的输出为:1,2,3,4,5,6,7,8,9;

  首先给出中序遍历的递归函数,代码如下:

 1 typedef struct tagNODE
 2 {
 3     int nVal;
 4     int bVisited; //是否被访问过
 5     struct tagNODE *pLeft;
 6     struct tagNODE *pRight;
 7 } NODE, *LPNODE;
 8
 9 //中序遍历二叉树(递归版本)
10 void Travel_Recursive(LPNODE pNode)
11 {
12     if(pNode != NULL)
13     {
14         Travel_Recursive(pNode->pLeft);
15         _tprintf(_T("%ld, "), pNode->nVal);
16         Travel_Recursive(pNode->pRight);
17     }
18 }

  很明显,对应于前面给出的定义,只需要调整上述代码中行号为 14,15,16 的顺序,就可以得到相应的遍历序。

  现在,引入栈数据结构,它是一个元素为节点指针的数组,将上面的递归函数改写为非递归函数。中序遍历的基本方法是:

  (1)将根节点 push 入栈;

  (2)当栈不为空时,重复(3)到(5)的操作:

  (3)偷窥栈顶部节点,如果节点的左子节点不为 NULL,且没有被访问,则将其左子节点 push 入栈,并跳到(3)。

  (4)当被偷窥的节点没有左子树,pop 该节点出栈,并访问它(同时标记该节点为已访问状态)。

  (5)当该节点的右子节点不为空,将其右子节点 push 入栈,并跳到(3)。

  根据以上方法,给出非递归函数的中序遍历版本代码如下:

 1 typedef struct tagNODE
 2 {
 3     int nVal;
 4     int bVisited; //是否被访问过
 5     struct tagNODE *pLeft;
 6     struct tagNODE *pRight;
 7 } NODE, *LPNODE;
 8
 9 //辅助数据结构
10 LPNODE g_Stack[256];
11 int g_nTop;
12
13 //遍历二叉树,借助于stack数据结构的非递归版本
14 void TravelTree()
15 {
16     //while the stack is not empty
17     while(g_nTop >= 0)
18     {
19         //peek the top node in stack;
20         LPNODE pNode = g_Stack[g_nTop];
21
22         //push left child;
23         if(pNode->pLeft != NULL && !pNode->pLeft->bVisited)
24         {
25             ++g_nTop;
26             g_Stack[g_nTop] = pNode->pLeft;
27             continue;
28         }
29
30         //pop and visit it;
31         _tprintf(_T("%ld, "), pNode->nVal);
32         pNode->bVisited = 1;
33         --g_nTop;
34
35         //push right child;
36         if(pNode->pRight != NULL && !pNode->pRight->bVisited)
37         {
38             ++g_nTop;
39             g_Stack[g_nTop] = pNode->pRight;
40             continue;
41         }
42     }
43 }

  在上面的代码的 while 循环体内,可以分为三个小的代码块:

  (1)pop 栈顶的节点,并访问;

  (2)push 左子节点;

  (3)push 右子节点;

  只要调整 while 循环体中的这三个代码块的顺序,就可以分别实现三种遍历序。从上面的代码中,有两点需要说明:

  (1)最后一个代码块中的 continue 可以不需要写,但为了可以调整代码块的顺序,两个 continue 都是需要的。

  (2)因为前序遍历的逻辑的简洁性,不借助于 bVisited 标记,也可以完成遍历,但为了通用,还是需要这个节点标记。

  最后,补充上其他并不重要的方法,创建树,释放树,main 函数的代码如下:

//左右 Child 定义
#define LCHILD        0
#define RCHILD        1

typedef struct tagNODE
{
    int nVal;
    int bVisited; //是否被访问过
    struct tagNODE *pLeft;
    struct tagNODE *pRight;
} NODE, *LPNODE;

LPNODE g_Stack[256];
int g_nTop;

LPNODE InsertNode(LPNODE pParent, int nWhichChild, int val)
{
    LPNODE pNode = (LPNODE)malloc(sizeof(NODE));
    memset(pNode, 0, sizeof(NODE));
    pNode->nVal = val;

    if(pParent != NULL)
    {
        if(nWhichChild == LCHILD)
            pParent->pLeft = pNode;
        else
            pParent->pRight = pNode;
    }
    return pNode;
}

//递归释放二叉树的内存
void FreeTree(LPNODE pRoot)
{
    if(pRoot != NULL)
    {
        FreeTree(pRoot->pLeft);
        FreeTree(pRoot->pRight);
        //_tprintf(_T("freeing Node (%ld) ...\n"), pRoot->nVal);
        free(pRoot);
    }
}

int _tmain(int argc, _TCHAR* argv[])
{
    //索引为 0 的元素不使用。
    LPNODE pNodes[10] = { 0 };

    pNodes[1] = InsertNode(pNodes[0], LCHILD, 7);
    pNodes[2] = InsertNode(pNodes[1], LCHILD, 4);
    pNodes[3] = InsertNode(pNodes[1], RCHILD, 9);
    pNodes[4] = InsertNode(pNodes[2], LCHILD, 2);
    pNodes[5] = InsertNode(pNodes[2], RCHILD, 6);
    pNodes[6] = InsertNode(pNodes[3], LCHILD, 8);
    pNodes[7] = InsertNode(pNodes[4], LCHILD, 1);
    pNodes[8] = InsertNode(pNodes[4], RCHILD, 3);
    pNodes[9] = InsertNode(pNodes[5], LCHILD, 5);

    //push 根节点
    g_nTop = 0;
    g_Stack[g_nTop] = pNodes[1];

    TravelTree();
    _tprintf(_T("\n"));

    Travel_Recursive(pNodes[1]);
    _tprintf(_T("\n"));

    FreeTree(pNodes[1]);
    return 0;
}

  可以看到,释放树(FreeTree)这个函数,就是按照后序遍历的顺序进行释放的。

  【补充】和本文相关的我写的其他博客文章:

  (1)采用路径模型实现遍历二叉树的方法。2013-5-18;

  (2)[非原创]树和图的遍历。2008-8-10;

  【后记】

  以上补充文章,和本文一同,献给曾经向我请教“采用非递归方法遍历树”问题的小玉(littlehead)学妹。尽管,限于个人天赋和能力的有限,我给出的解答迟了一些。

采用栈数据结构的二叉树遍历

时间: 2024-08-06 07:57:31

采用栈数据结构的二叉树遍历的相关文章

数据结构之二叉树遍历

二叉树的 二叉树节点的描述 public class BiTNode { char data; BiTNode lc,rc; } 下面我们分别用递归和非递归实现前.中.后序遍历,以及使用了两种方法来进行层次遍历二叉树,一种方法就是使用STL中的queue,另外一种方法就是定义了一个数组队列,分别使用了front和rear两个数组的下标来表示入队与出队. 1.前序遍历 未完待续... 数据结构之二叉树遍历,布布扣,bubuko.com

java数据结构之二叉树遍历的非递归实现

算法概述递归算法简洁明了.可读性好,但与非递归算法相比要消耗更多的时间和存储空间.为提高效率,我们可采用一种非递归的二叉树遍历算法.非递归的实现要借助栈来实现,因为堆栈的先进后出的结构和递归很相似.对于中序遍历来说,非递归的算法比递归算法的效率要高的多.其中序遍历算法的实现的过程如下:(1).初始化栈,根结点进栈:(2).若栈非空,则栈顶结点的左孩子结点相继进栈,直到null(到叶子结点时)退栈:访问栈顶结点(执行visit操作)并使栈顶结点的右孩子结点进栈成为栈顶结点.(3).重复执行(2),

【自考】数据结构之二叉树遍历

什么是数据结构? 首先看看维基百科的定义:在计算机科学或信息科学中,数据结构(英语:data structure)是计算机中存储.组织数据的方式.通常情况下,精心选择的数据结构可以带来最优效率的算法. 课本中的定义:指一组相互之间存在一种或多种特定关系的数据的组织方式和它们在计算机中的存储方式,以及定义在该组数据上的一组操作. 有哪些内容?    直接看图了解数据结构的知识点,如下: 不管是算法还是逻辑结构,都是用数据说话的,所以要先明白了数据的基本概念.大的联系图中已给出,小的知识点需要我们去

[javaSE] 数据结构(二叉树-遍历与查找)

前序遍历:中,左,右 中序遍历:左,中,右 后序遍历:左,右,中 二叉树查找 从根节点进行比较,目标比根节点小,指针移动到左边 从根节点进行比较,目标比根节点大,指针移动到右边 /** * 前序遍历 * @param tree */ public void preOrder(BSTree tree){ preOrder(tree.mRoot); } public void preOrder(BSTNode node){ if(node!=null){ System.out.print(node.

【数据结构】二叉树遍历

先序遍历和中序遍历非递归代码: #include <iostream> #include <vector> using namespace std; typedef struct BinaryTree { int data; struct BinaryTree *rchild, *lchild; }BinaryTree; int createBinaryTree( BinaryTree * &T) //必须用引用 因为内存是在函数里面分配的 { int ch; scanf(

浅谈二叉树遍历的栈方法

  众多周知,对于二叉树的遍历, 一种比较容易理解以及编写的方式就是递归的方式了,下面针对二叉树遍历的中序遍历做一个简单的分析: void travelTree(BiTree T, int deep){ if (T->lchild != NULL) travelTree(T->lchild, ++deep); for (int x = 0; x < deep; x++) { printf("--"); } printf("%c\n", T->

数据结构之二叉树的遍历汇总

声明:小弟写博客不久,主要是边上班边学习边写博客,如果错误,望各位包涵并指导. 二叉树是一种常用的非线性数据结构,二叉树是由一个根节点和称为根的左.右子树的两颗互不相交的二叉树构成.二叉树具有一些特殊的性质,如第i层上最多有2^(i-1)个结点.二叉树的链式存储结构如下: typedef struct BTNode { char data; //字符型数据; struct BTNode* lChild,*rChild; //左右子结点的指针; }BTNode,*BiTree; data为二叉树中

数据结构与算法 3:二叉树,遍历,创建,释放,拷贝,求高度,面试,线索树

[本文谢绝转载,原文来自http://990487026.blog.51cto.com] 树 数据结构与算法 3:二叉树,遍历,创建,释放,拷贝,求高度,面试,线索树 二叉树的创建,关系建立 二叉树的创建,关系建立2 三叉链表法 双亲链表: 二叉树的遍历 遍历的分析PPT 计算二叉树中叶子节点的数目:使用全局变量计数器 计算二叉树中叶子节点的数目:不使用全局变量计数器 无论是先序遍历,中序遍历,后序遍历,求叶子的数字都不变;因为本质都是一样的,任何一个节点都会遍历3趟 求二叉树的高度 二叉树的拷

数据结构——二叉树遍历之“递归与非递归遍历”

简述 二叉树的遍历分为先序遍历.中序遍历和后序遍历.如下图所示: 递归遍历 private void bianli1(List<Integer> list, TreeNode root) { // 先序遍历 if (root == null) { return; } list.add(root.val); bianli1(list, root.left); bianli1(list, root.right); } private void bianli2(List<Integer>