UVa563_Crimewave(网络流/最大流)(小白书图论专题)

解题报告

思路:

要求抢劫银行的伙伴(想了N多名词来形容,强盗,贼匪,小偷,sad。都认为不合适)不在同一个路口相碰面,能够把点拆成两个点,一个入点。一个出点。

再设计源点s连向银行位置。再矩阵外围套上一圈。连向汇点t

矩阵内的点,出点和周围的点的出点相连。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
#define M 500000
#define N 10000
#define inf 0x3f3f3f3f
using namespace std;
int n,m,h,w,head[N],pre[N],l[N],mmap[N][N],cnt,s,t;
struct node {
    int  v,w,next;
} edge[M];
int dx[]= {-1,0,1,0};
int dy[]= {0,1,0,-1};
void add(int u,int v,int w) {
    edge[cnt].v=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;

    edge[cnt].v=u;
    edge[cnt].w=0;
    edge[cnt].next=head[v];
    head[v]=cnt++;
}
int bfs() {
    memset(l,-1,sizeof(l));
    l[s]=0;
    int i,u,v;
    queue<int >Q;
    Q.push(s);
    while(!Q.empty()) {
        u=Q.front();
        Q.pop();
        for(i=head[u]; i!=-1; i=edge[i].next) {
            v=edge[i].v;
            if(l[v]==-1&&edge[i].w) {
                l[v]=l[u]+1;
                Q.push(v);
            }
        }
    }
    return l[t]>0;
}
int dfs(int u,int f) {
    int a,flow=0;
    if(u==t)return f;
    for(int i=head[u]; i!=-1; i=edge[i].next) {
        int v=edge[i].v;
        if(l[v]==l[u]+1&&edge[i].w&&(a=dfs(v,min(f,edge[i].w)))) {
            edge[i].w-=a;
            edge[i^1].w+=a;
            flow+=a;
            f-=a;
            if(!f)break;
        }
    }
    if(!flow)l[u]=-1;
    return flow;
}
int main() {
    int i,j,T,k,x,y;
    scanf("%d",&T);
    while(T--) {
        cnt=k=0;
        memset(head,-1,sizeof(head));
        scanf("%d%d%d",&h,&w,&m);
        h+=2;
        w+=2;
        for(i=0; i<h; i++) {
            for(j=0; j<w; j++) {
                mmap[i][j]=++k;
            }
        }
        s=0;
        t=k*2+1;
        for(i=1; i<h-1; i++) {
            for(j=1; j<w-1; j++) {
                add(mmap[i][j],mmap[i][j]+k,1);
                for(int l=0; l<4; l++) {
                    int x=i+dx[l];
                    int y=j+dy[l];
                    if(x>=1&&x<h-1&&y>=1&&y<w-1)
                        add(mmap[i][j]+k,mmap[x][y],1);
                }
            }
        }
        for(i=1; i<w-1; i++) {
            add(mmap[1][i]+k,mmap[0][i],1);
            add(mmap[0][i],t,1);
            add(mmap[h-2][i]+k,mmap[h-1][i],1);
            add(mmap[h-1][i],t,1);
        }
        for(i=1; i<h-1; i++) {
            add(mmap[i][1]+k,mmap[i][0],1);
            add(mmap[i][0],t,1);
            add(mmap[i][w-2]+k,mmap[i][w-1],1);
            add(mmap[i][w-1],t,1);
        }
        for(i=0; i<m; i++) {
            scanf("%d%d",&x,&y);
            add(s,mmap[x][y],1);
        }
        int ans=0,a;
        while(bfs())
            while(a=dfs(s,inf))
                ans+=a;
        if(ans==m)
            printf("possible\n");
        else printf("not possible\n");
    }
    return 0;
}

 Crimewave 

Nieuw Knollendam is a very modern town. This becomes clear already when looking at the layout of its map, which is just a rectangular grid of streets and avenues. Being an important trade centre, Nieuw Knollendam
also has a lot of banks. Almost on every crossing a bank is found (although there are never two banks at the same crossing). Unfortunately this has attracted a lot of criminals. Bank hold-ups are quite common, and often on one day several banks are robbed.
This has grown into a problem, not only to the banks, but to the criminals as well. After robbing a bank the robber tries to leave the town as soon as possible, most of the times chased at high speed by the police. Sometimes two running criminals pass the
same crossing, causing several risks: collisions, crowds of police at one place and a larger risk to be caught.

To prevent these unpleasant situations the robbers agreed to consult together. Every Saturday night they meet and make a schedule for the week to come: who is going to rob which bank on which day? For every day they try to plan the get-away routes, such that
no two routes use the same crossing. Sometimes they do not succeed in planning the routes according to this condition, although they believe that such a planning should exist.

Given a grid of  and the crossings where the banks to be robbed are located, find out whether or not it is possible to plan a
get-away route from every robbed bank to the city-bounds, without using a crossing more than once.

Input

The first line of the input contains the number of problems p to be solved.

  • The first line of every problem contains the number s of streets ( ), followed by the number a of avenues
    (), followed by the number b ()
    of banks to be robbed.
  • Then b lines follow, each containing the location of a bank in the form of two numbers x (the number of the street) andy (the number of the avenue). Evidently  and .

Output

The output file consists of p lines. Each line contains the text possible or not
possible
. If it is possible to plan non-crossing get-away routes, this line should contain the word: possible. If this is not possible, the line
should contain the words not possible.

Sample Input

2
6 6 10
4 1
3 2
4 2
5 2
3 4
4 4
5 4
3 6
4 6
5 6
5 5 5
3 2
2 3
3 3
4 3
3 4

Sample Output

possible
not possible


Miguel A. Revilla

1998-03-10

时间: 2024-11-05 18:46:47

UVa563_Crimewave(网络流/最大流)(小白书图论专题)的相关文章

UVa10806_Dijkstra, Dijkstra.(网络流/费用流)(小白书图论专题)

解题报告 思路: 从s->t 再从t->s等同与s->t两次,要求每条路只能走一次,要求最小花费,让每一条边容量为1,跑跑费用流 只要跑出流量为2就结束. #include <iostream> #include <cstring> #include <cstdio> #include <queue> #define inf 0x3f3f3f3f #define N 5000 #define M 50000 using namespace

UVa10048_Audiophobia(最短路/floyd)(小白书图论专题)

解题报告 题意: 求所有路中最大分贝最小的路. 思路: 类似floyd算法的思想,u->v可以有另外一点k,通过u->k->v来走,拿u->k和k->v的最大值和u->v比较,存下最小的值. #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #define inf 0x3f3f3f3f using namespace std;

UVa10397_Connect the Campus(最小生成树)(小白书图论专题)

解题报告 题目传送门 题意: 使得学校网络互通的最小花费,一些楼的线路已经有了. 思路: 存在的线路当然全都利用那样花费肯定最小,把存在的线路当成花费0,求最小生成树 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #define inf 0x3f3f3f3f using namespace std; int n,m,_hash[1110][1110],vis

UVa10099_The Tourist Guide(最短路/floyd)(小白书图论专题)

解题报告 题意: 有一个旅游团现在去出游玩,现在有n个城市,m条路.由于每一条路上面规定了最多能够通过的人数,现在想问这个旅游团人数已知的情况下最少需要运送几趟 思路: 求出发点到终点所有路当中最小值最大的那一条路. 求发可能有多种,最短路的松弛方式改掉是一种,最小生成树的解法也是一种(ps,prime和dijs就是这样子类似的) #include <iostream> #include <cstdio> #include <cstring> #include <

UVa10034/POJ2560_Freckles(最小生成树)(小白书图论专题)

解题报告 题意: 把所有点连起来,求使用的墨水最少. 思路: 裸最小生成树. #include <iostream> #include <cstring> #include <cstdio> #include <cmath> #define inf 0x3f3f3f3f using namespace std; struct N { double x,y; } node[110]; int vis[110],n; double mmap[110][110],

UVa10801_Lift Hopping(最短路)(小白书图论专题)

解题报告 思路 神奇的电梯,我的思路是直接整出一个超级源点和超级汇点(貌似这是网络流的叫法,,,sad) 源点与所有有在0层的电梯连线,汇点与k层连线,然后每个电梯如果有在同一层的连60s的线,对于每个电梯可以到达的每一层连一条线,处理层和电梯就直接用类似于离散化的方式处理,比如说第一个电梯可以有n个层可以到,第二个电梯有m个层可以到,那么就有1-n+m的点,源点0,汇点n+m+1: 做完看来别人的解题报告,发现我的想法很辍,因为只有在换电梯的时候才要松弛加上60,用邻接矩阵处理就很好. 智商捉

UVa10803_Thunder Mountain(最短路)(小白书图论专题)

解题报告 裸floyd. #include <iostream> #include <cstring> #include <cstdio> #include <cmath> #define inf 0x3f3f3f3f using namespace std; int n; double mmap[210][210]; struct node { double x,y; } p[210]; double disc(node p1,node p2) { ret

UVa558_Wormholes(最短路)(小白书图论专题)

解题报告 思路: spfa判负环. #include <iostream> #include <cstring> #include <cstdio> #include <queue> #define inf 0x3f3f3f3f #define N 40000 #define M 100000 using namespace std; struct node { int v,w,next; } edge[M]; int head[N],dis[N],vis[

UVa10986_Sending email(最短路)(小白书图论专题)

解题报告 思路: 裸裸的最短路. #include <iostream> #include <cstring> #include <cstdio> #include <queue> #define inf 0x3f3f3f3f #define N 40000 #define M 100000 using namespace std; struct node { int v,w,next; }edge[M]; int head[N],dis[N],vis[N]