【读书笔记】——终极算法

Note1:网飞的推荐倾向于长尾

Note2:

符号学派:逆向演绎,从哲学、心理学、逻辑学寻求洞见——>逆向演绎

连接学派:对大脑进行逆向分析,来源于神经科学和物理学——>反向传播

进化学派:在计算机上进行模拟,利用遗传学和进化生物学——>遗传编程

贝叶斯学派:概率推理,理论基础是统计学——>贝叶斯推理

类推学派:通过相似性判断来外推学习,接受心理学和数学最优化的影响 ——>支持向量机

Note3:

机器学习是人工智能的子领域。

Note4:

为什么商业用户机器学习?

商业的发展:

1、人工

2、计算机

3、机器学习处理过载

Note5:

机器学习给科学研究带来好处

曼彻斯特生物研究院激动人心

时间: 2025-01-07 12:46:13

【读书笔记】——终极算法的相关文章

《数据结构与算法分析 C语言描述》读书笔记——分治算法

书中用求解最大子序列和的方式介绍了分治算法(divide-and-conquer) 分治算法是一种相对快速的算法 运行时间为O(logN) 最大子序列和的问题如下: 给出一组整数 A1  A2 … AN 求∑jk=i Ak 若所有整数均为负 则最大子序列和为0 e.g. 输入-2, 11,-4, 13, -5, -2 输出20(A2到A4) 分治算法就如同字面描述的一样 先分再治 分 指的是将问题分为两部分几乎相同的子问题 进行递归求解 治 指的是将 分 的解通过简单的手段合并 得到最终解 对于

?机器视觉算法与应用读书笔记(算法)

1.数据结构 2.图像增强 1. 灰度值变换 2. 辐射标定 3. 图像平滑 1. 时域去噪法 2. 空间域去噪法 均值滤波器 递归线性滤波器:将上次计算得到的值带入到下次的值中 缺点:噪声并不能被全部消除 高斯滤波器 高斯滤波器 4. 傅里叶变换 将函数h(x)从空间域转变到频率域 是一种可逆变换 3. 几何变换 1. 仿射变换 二维to二维之间的变换 对图像中的物体的尺寸进行修正(平移和旋转角度修正) 一般有一个2x2的线性部分和一个平移部分 2. 投影变换 高维to二维之间的变换 仿射变换

数据结构与算法(刺猬书)读书笔记----目录

最近在抓底层的语言基础,以前对数据结构和算法并没有太大感觉,但越往深处学就越觉得这些基础真的是要牢牢掌握住.一个简简单单的数组,深究起来都有很多学问.所以打算写个一系列的读书笔记,好好梳理一下这一块的基础知识.这本书是<数据结构预算法JavaScript描述>,是基于JavaScript的.里面大致介绍了数组.列表.栈.队列.链表.散列.集合及各种常见基础算法.作为基础读物算是很全面的.这系列读书笔记也将会跟着书里的顺序一章章的进行梳理.整个过程计划耗时2-3个月,每周更新一到两张,更新的笔记

程序语言的奥妙:算法解读 &mdash;&mdash;读书笔记

算法(Algorithm) 是利用计算机解决问题的处理步骤. 算法是古老的智慧.如<孙子兵法>,是打胜仗的算法. 算法是古老智慧的结晶,是程序的范本. 学习算法才能编写出高质量的程序. 懂得了算法,游戏水平会更高. 比如下棋,如果懂得棋谱,就不需要每次考虑"寻找最好的一步棋",按照棋谱 就可以走出最好的几步棋.棋谱是先人们智慧的结果,因此掌握多种棋谱的人更 容易在对弈中获得胜利. 算法的学习类似学习游戏攻略. 算法是编写好程序的"棋谱". 算法必须满足&

算法导论读书笔记之钢条切割问题

算法导论读书笔记之钢条切割问题 巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 给定一段长度为n英寸的钢条和一个价格表 pi (i=1,2, -,n),求切割钢条的方案,使得销售收益rn最大.注意,如果长度为n英寸的钢条价格pn足够大,最优解可能就是完全不需要切割. 若钢条的长度为i,则钢条的价格为Pi,如何对给定长度的钢条进行切割能得到最大收益? 长度i   1   2    3   4     5      6     7     8  

算法导论读书笔记(15) - 红黑树的具体实现

算法导论读书笔记(15) - 红黑树的具体实现 目录 红黑树的简单Java实现 红黑树的简单Java实现 /** * 红黑树 * * 部分代码参考自TreeMap源码 */ public class RedBlackTree<T> { protected TreeNode<T> root = null; private final Comparator<? super T> comparator; private int size = 0; private static

[读书笔记]算法(Sedgewick著)·第二章.初级排序算法

本章开始学习排序算法 1.初级排序算法 先从选择排序和插入排序这两个简单的算法开始学习排序算法.选择排序就是依次找到当前数组中最小的元素,将其和第一个元素交换位置,直到整个数组有序. 1 public static void sort(Comparable a[]){ 2 int N = a.length; 3 for(int i = 0; i < N; i ++){ 4 int min = i; //最小元素索引 5 for(int j = i + 1; j < N; j++){ 6 if(

opencv2对读书笔记——使用均值漂移算法查找物体

一些小概念 1.反投影直方图的结果是一个概率映射,体现了已知图像内容出如今图像中特定位置的概率. 2.概率映射能够找到最初的位置,从最初的位置開始而且迭代移动,便能够找到精确的位置,这就是均值漂移算法做的事情. 3.均值漂移算法是以迭代的方式锁定函数的局部最大值的. 关于均值漂移算法的过程(opencv) 事实上均值漂移算法就是寻找提前定义寻找区域中数据点的重心,或者说加权平均值.将寻找区域中心移动到数据点的重心处,并反复这个过程直到寻找区域重心收敛到一个稳定点. OpenCV中定义了两种终止条

[读书笔记]算法(Sedgewick著)·第一章(1)

到家放松之后就开始学习算法了,手里拿的是拿的是一本Robert Sedgewick的橙皮书<算法(第四版)>的.这本书与导论那本书的不同之处在于轻数学思想.重实现,也就是说这是一本很不错的基础编程书.拿来做书中的练习还是蛮不错的,封面说有50种算法哦.思维导图如下,就且学且更新吧. 1.基本编程模型 第一章开始讲述用程序实现算法的优点:程序是对算法精确.优雅和完全的描述:可以通过运行程序来学习算法的各种性质:可以在应用程序中直接使用这些算法.还有这种学习算法的缺点缺点:分离思想和实现细节的困难

《机器学习实战》读书笔记2:K-近邻(kNN)算法

声明:文章是读书笔记,所以必然有大部分内容出自<机器学习实战>.外加个人的理解,另外修改了部分代码,并添加了注释 1.什么是K-近邻算法? 简单地说,k-近邻算法采用测量不同特征值之间距离的方法进行分类.不恰当但是形象地可以表述为近朱者赤,近墨者黑.它有如下特点: 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 适用数据范围:数值型和标称型 2.K-近邻算法的工作原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中