linux驱动的异步通知(kill_fasync,fasync)---- 驱动程序向应用程序发送信号

应用程序

[cpp] view plain copy

  1. #include <sys/types.h>
  2. #include <sys/stat.h>
  3. #include <fcntl.h>
  4. #include <stdio.h>
  5. #include <poll.h>
  6. #include <signal.h>
  7. #include <sys/types.h>
  8. #include <unistd.h>
  9. #include <fcntl.h>
  10. /* fifthdrvtest
  11. */
  12. int fd;
  13. //信号处理函数
  14. void my_signal_fun(int signum)
  15. {
  16. unsigned char key_val;
  17. read(fd, &key_val, 1);
  18. printf("key_val: 0x%x\n", key_val);
  19. }
  20. int main(int argc, char **argv)
  21. {
  22. unsigned char key_val;
  23. int ret;
  24. int Oflags;
  25. //在应用程序中捕捉SIGIO信号(由驱动程序发送)
  26. signal(SIGIO, my_signal_fun);
  27. fd = open("/dev/buttons", O_RDWR);
  28. if (fd < 0)
  29. {
  30. printf("can‘t open!\n");
  31. }
  32. //将当前进程PID设置为fd文件所对应驱动程序将要发送SIGIO,SIGUSR信号进程PID
  33. fcntl(fd, F_SETOWN, getpid());
  34. //获取fd的打开方式
  35. Oflags = fcntl(fd, F_GETFL);
  36. //将fd的打开方式设置为FASYNC --- 即 支持异步通知
  37. // 该行代码执行会触发 驱动程序中 file_operations->fasync 函数 ------fasync函数调用 fasync_helper初始化一个fasync_struct结构体,该结构体描述了将要发送信号的进程 PID (fasync_struct->fa_file->f_owner->pid)
  38. fcntl(fd, F_SETFL, Oflags | FASYNC);
  39. while (1)
  40. {
  41. sleep(1000);
  42. }
  43. return 0;
  44. }

驱动程序

[cpp] view plain copy

  1. #include <linux/module.h>
  2. #include <linux/kernel.h>
  3. #include <linux/fs.h>
  4. #include <linux/init.h>
  5. #include <linux/delay.h>
  6. #include <linux/irq.h>
  7. #include <asm/uaccess.h>
  8. #include <asm/irq.h>
  9. #include <asm/io.h>
  10. #include <asm/arch/regs-gpio.h>
  11. #include <asm/hardware.h>
  12. #include <linux/poll.h>
  13. static struct class *fifthdrv_class;
  14. static struct class_device  *fifthdrv_class_dev;
  15. //volatile unsigned long *gpfcon;
  16. //volatile unsigned long *gpfdat;
  17. static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
  18. /* 中断事件标志, 中断服务程序将它置1,fifth_drv_read将它清0 */
  19. static volatile int ev_press = 0;
  20. static struct fasync_struct *button_async;
  21. struct pin_desc{
  22. unsigned int pin;
  23. unsigned int key_val;
  24. };
  25. /* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
  26. /* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
  27. static unsigned char key_val;
  28. /*
  29. * K1,K2,K3,K4对应GPG0,GPG3,GPG5,GPG6
  30. */
  31. struct pin_desc pins_desc[4] = {
  32. {S3C2410_GPG0, 0x01},
  33. {S3C2410_GPG3, 0x02},
  34. {S3C2410_GPG5, 0x03},
  35. {S3C2410_GPG6, 0x04},
  36. };
  37. /*
  38. * 确定按键值
  39. */
  40. static irqreturn_t buttons_irq(int irq, void *dev_id)
  41. {
  42. struct pin_desc * pindesc = (struct pin_desc *)dev_id;
  43. unsigned int pinval;
  44. pinval = s3c2410_gpio_getpin(pindesc->pin);
  45. if (pinval)
  46. {
  47. /* 松开 */
  48. key_val = 0x80 | pindesc->key_val;
  49. }
  50. else
  51. {
  52. /* 按下 */
  53. key_val = pindesc->key_val;
  54. }
  55. ev_press = 1;                  /* 表示中断发生了 */
  56. wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程 */
  57. //发送信号SIGIO信号给fasync_struct 结构体所描述的PID,触发应用程序的SIGIO信号处理函数
  58. kill_fasync (&button_async, SIGIO, POLL_IN);
  59. return IRQ_RETVAL(IRQ_HANDLED);
  60. }
  61. static int fifth_drv_open(struct inode *inode, struct file *file)
  62. {
  63. /* GPG0,GPG3,GPG5,GPG6为中断引脚: EINT8,EINT11,EINT13,EINT14 */
  64. request_irq(IRQ_EINT8,  buttons_irq, IRQT_BOTHEDGE, "K1", &pins_desc[0]);
  65. request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "K2", &pins_desc[1]);
  66. request_irq(IRQ_EINT13, buttons_irq, IRQT_BOTHEDGE, "K3", &pins_desc[2]);
  67. request_irq(IRQ_EINT14, buttons_irq, IRQT_BOTHEDGE, "K4", &pins_desc[3]);
  68. return 0;
  69. }
  70. ssize_t fifth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
  71. {
  72. if (size != 1)
  73. return -EINVAL;
  74. /* 如果没有按键动作, 休眠 */
  75. wait_event_interruptible(button_waitq, ev_press);
  76. /* 如果有按键动作, 返回键值 */
  77. copy_to_user(buf, &key_val, 1);
  78. ev_press = 0;
  79. return 1;
  80. }
  81. int fifth_drv_close(struct inode *inode, struct file *file)
  82. {
  83. free_irq(IRQ_EINT8,  &pins_desc[0]);
  84. free_irq(IRQ_EINT11, &pins_desc[1]);
  85. free_irq(IRQ_EINT13, &pins_desc[2]);
  86. free_irq(IRQ_EINT14, &pins_desc[3]);
  87. return 0;
  88. }
  89. static unsigned fifth_drv_poll(struct file *file, poll_table *wait)
  90. {
  91. unsigned int mask = 0;
  92. poll_wait(file, &button_waitq, wait); // 不会立即休眠
  93. if (ev_press)
  94. mask |= POLLIN | POLLRDNORM;
  95. return mask;
  96. }
  97. static int fifth_drv_fasync (int fd, struct file *filp, int on)
  98. {
  99. printk("driver: fifth_drv_fasync\n");
  100. //初始化/释放 fasync_struct 结构体 (fasync_struct->fa_file->f_owner->pid)
  101. return fasync_helper (fd, filp, on, &button_async);
  102. }
  103. static struct file_operations sencod_drv_fops = {
  104. .owner   =  THIS_MODULE,    /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
  105. .open    =  fifth_drv_open,
  106. .read    =  fifth_drv_read,
  107. .release =  fifth_drv_close,
  108. .poll    =  fifth_drv_poll,
  109. .fasync  =  fifth_drv_fasync,
  110. };
  111. int major;
  112. static int fifth_drv_init(void)
  113. {
  114. major = register_chrdev(0, "fifth_drv", &sencod_drv_fops);
  115. fifthdrv_class = class_create(THIS_MODULE, "fifth_drv");
  116. fifthdrv_class_dev = class_device_create(fifthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */
  117. //  gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
  118. //  gpfdat = gpfcon + 1;
  119. return 0;
  120. }
  121. static void fifth_drv_exit(void)
  122. {
  123. unregister_chrdev(major, "fifth_drv");
  124. class_device_unregister(fifthdrv_class_dev);
  125. class_destroy(fifthdrv_class);
  126. //  iounmap(gpfcon);
  127. return 0;
  128. }
  129. module_init(fifth_drv_init);
  130. module_exit(fifth_drv_exit);
  131. MODULE_LICENSE("GPL");

http://blog.csdn.net/psvoldemort/article/details/21184525

时间: 2024-12-26 09:22:14

linux驱动的异步通知(kill_fasync,fasync)---- 驱动程序向应用程序发送信号的相关文章

深入浅出~Linux设备驱动之异步通知和异步I/O

在设备驱动中使用异步通知可以使得对设备的访问可进行时,由驱动主动通知应用程序进行访问.因此,使用无阻塞I/O的应用程序无需轮询设备是否可访问,而阻塞访问也可以被类似“中断”的异步通知所取代.异步通知类似于硬件上的“中断”概念,比较准确的称谓是“信号驱动的异步I/O". 1.异步通知的概念和作用 影响:阻塞--应用程序无需轮询设备是否可以访问 非阻塞--中断进行通知 即:由驱动发起,主动通知应用程序 2.linux异步通知编程 2.1 linux信号 作用:linux系统中,异步通知使用信号来实现

竞争的关键驱动的异步通知

转载请注明出处:http://blog.csdn.net/ruoyunliufeng/article/details/24326603 说起异步通知,简单点的理解就是:曾经都是应用程序主动看按键是否按下云云的. . . 这回应用程序架子大了.说老子才不去呢. 把任务给了驱动. 然后驱动发现按键按下.屁颠屁颠的去通知应用程序. 一.驱动代码 假设你看了前几篇文章.这个代码对你来说是很easy的,所修改的东西很的少. #include <linux/module.h> #include <l

Linux通信之异步通知模式

为了使设备支持异步通知机制,驱动程序中涉及以下3项工作:1. 支持F_SETOWN命令,能在这个控制命令处理中设置filp->f_owner为对应进程ID. 不过此项工作已由内核完成,设备驱动无须处理.2. 支持F_SETFL命令的处理,每当FASYNC标志改变时,驱动程序中的fasync()函数将得以执行. 驱动中应该实现fasync()函数. 3. 在设备资源可获得时,调用kill_fasync()函数激发相应的信号 应用程序:fcntl(fd, F_SETOWN, getpid()); /

《Linux4.0设备驱动开发详解》笔记--第九章:Linux设备驱动中的异步通知与同步I/O

在设备驱动中使用异步通知可以使得对设备的访问可进行时,由驱动主动通知应用程序进行访问.因此,使用无阻塞I/O的应用程序无需轮询设备是否可访问,而阻塞访问也可以被类似"中断"的异步通知所取代.异步通知类似于硬件上的"中断"概念,比较准确的称谓是"信号驱动的异步I/O". 9.1 异步通知的概念和作用 异步通知:一旦设备就绪,则主动通知应用程序,该应用程序无需查询设备状态 几种通知方式比较: 阻塞I/O :一直等待设备可访问后开始访问 非阻塞I/O:

Hasen的linux设备驱动开发学习之旅--异步通知

/** * Author:hasen * 参考 :<linux设备驱动开发详解> * 简介:android小菜鸟的linux * 设备驱动开发学习之旅 * 主题:异步通知 * Date:2014-11-05 */ 一.异步通知的概念和作用 阻塞和非阻塞访问.poll()函数提供了较好地解决设备访问的机制,但是如果有了异步通知整套机制就更 加完整了. 异步通知的意思是:一旦设备就绪,则主动通知应用程序,这样应用程序根本就不需要查询设备状态,这 一点非常类似于硬件上"中断"的概

linux设备驱动程序中的阻塞、IO多路复用与异步通知机制

一.阻塞与非阻塞 阻塞与非阻塞是设备访问的两种方式.在写阻塞与非阻塞的驱动程序时,经常用到等待队列. 阻塞调用是指调用结果返回之前,当前线程会被挂起,函数只有在得到结果之后才会返回. 非阻塞指不能立刻得到结果之前,该函数不会阻塞当前进程,而会立刻返回. 函数是否处于阻塞模式和驱动对应函数中的实现机制是直接相关的,但并不是一一对应的,例如我们在应用层设置为阻塞模式,如果驱动中没有实现阻塞,函数仍然没有阻塞功能. 二.等待队列 在linux设备驱动程序中,阻塞进程可以使用等待队列来实现. 在内核中,

linux中驱动异步通知应用程序的方法

驱动程序运行在内核空间中,应用程序运行在用户空间中,两者是不能直接通信的.但在实际应用中,在设备已经准备好的时候,我们希望通知用户程序设备已经ok,用户程序可以读取了,这样应用程序就不需要一直查询该设备的状态,从而节约了资源,这就是异步通知.好,那下一个问题就来了,这个过程如何实现呢?简单,两方面的工作. 一 驱动方面:1. 在设备抽象的数据结构中增加一个struct fasync_struct的指针2. 实现设备操作中的fasync函数,这个函数很简单,其主体就是调用内核的fasync_hel

按键驱动异步通知

在此以前,我们都是让应用程序主动去读按键的状态,有没有一种情况,当驱动程序有数据时,主动去告诉应用程序,告诉它,有数据了,你赶紧来读吧.这种情况在linux里的专业术语就叫异步通知. 在按键的例子中异步通知可以理解为:当按键按下时,驱动程序会提醒(即触发)应用程序(通过信号signal来实现). 举一个例子:进程之间发信号 原来我们常用  kill 这个命令 : kill       -9    pid   kill这个命令就是一个发信号 发送者  :   kill 接收者  :   pid 信

Linux之异步通知20160702

异步通知,主要说的是使用信号的方式,同时使用信号也是实现进程之间通信的一种方式. 多的不说,我们直接看代码: 首先应用程序的: #include <sys/types.h> #include <unistd.h> #include <fcntl.h> /* fifthdrvtest */ int fd; void my_signal_fun(int signum) { unsigned char key_val; read(fd, &key_val, 1); p