hdu4965---Fast Matrix Calculation(矩阵)

Problem Description

One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B.

Step 2: Calculate M = C^(N*N).

Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.

Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

Input

The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.

Output

For each case, output the sum of all the elements in M’ in a line.

Sample Input

4 2 5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5 6 3 1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0 5 0 3 4 5 1 1 0 5 3 2 3 3 2 3 1 5 4 5 2 0 0

Sample Output

14 56

Author

SYSU

Source

2014 Multi-University Training Contest 9

Recommend

We have carefully selected several similar problems for you: 5189 5188 5186 5185 5184

直接按题意的做法,搞出一个1000*1000的矩阵,光一次乘法就超时了

注意到C = A*B

C * C * ….C = A(B*A) (B*A) ….. *B

其中B*A是一个k*k的矩阵,做n^2 - 1次的快速幂,这样就把时间控制下来了

/*************************************************************************
    > File Name: hdu4965.cpp
    > Author: ALex
    > Mail: [email protected]
    > Created Time: 2015年03月16日 星期一 17时51分56秒
 ************************************************************************/

#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;

int A[1010][10];
int B[10][1010];
int D[1010][1010];
int ans[1010][1010];

int K;

class MARTIX
{
    public:
        int mat[10][10];
        MARTIX()
        {
            memset (mat, 0, sizeof(mat));
        }
        MARTIX operator * (const MARTIX &b)const;
        MARTIX& operator = (const MARTIX &b);
};

MARTIX MARTIX :: operator * (const MARTIX &b)const
{
    MARTIX C;
    for (int i = 0; i < K; ++i)
    {
        for (int j = 0; j < K; ++j)
        {
            C.mat[i][j] = 0;
            for (int k = 0; k < K; ++k)
            {
                C.mat[i][j] += this -> mat[i][k] * b.mat[k][j];
                C.mat[i][j] %= 6;
            }
        }
    }
    return C;
}

MARTIX& MARTIX :: operator = (const MARTIX &b)
{
    for (int i = 0; i < K; ++i)
    {
        for (int j = 0; j < K; ++j)
        {
            this -> mat[i][j] = b.mat[i][j];
        }
    }
    return *this;
}

MARTIX fastpow(MARTIX A, int n)
{
    MARTIX ans;
    for (int i = 0; i < K; ++i)
    {
        ans.mat[i][i] = 1;
    }
    while (n)
    {
        if (n & 1)
        {
            ans = ans * A;
        }
        n >>= 1;
        A = A * A;
    }
    return ans;
}

int main()
{
    int n;
    while (~scanf("%d%d", &n, &K))
    {
        if (!n && !K)
        {
            break;
        }
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < K; ++j)
            {
                scanf("%d", &A[i][j]);
            }
        }
        for (int i = 0; i < K; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                scanf("%d", &B[i][j]);
            }
        }
        MARTIX C;
        for (int i = 0; i < K; ++i)
        {
            for (int j = 0; j < K; ++j)
            {
                for (int k = 0; k < n; ++k)
                {
                    C.mat[i][j] += B[i][k] * A[k][j];
                    C.mat[i][j] %= 6;
                }
            }
        }
        C = fastpow(C, n * n - 1);
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < K; ++j)
            {
                D[i][j] = 0;
                for (int k = 0; k < K; ++k)
                {
                    D[i][j] += A[i][k] * C.mat[k][j];
                    D[i][j] %= 6;
                }
            }
        }
        int res = 0;
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                ans[i][j] = 0;
                for (int k = 0; k < K; ++k)
                {
                    ans[i][j] += D[i][k] * B[k][j];
                    ans[i][j] %= 6;
                }
                res += ans[i][j];
            }
        }
        printf("%d\n", res);
    }
    return 0;
}
时间: 2024-11-05 18:42:53

hdu4965---Fast Matrix Calculation(矩阵)的相关文章

hdu 4965 Fast Matrix Calculation(矩阵快速幂)

题目链接:hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N: 矩阵C = A*B 矩阵M=CN?N 将矩阵M中的所有元素取模6,得到新矩阵M' 计算矩阵M'中所有元素的和 解题思路:因为矩阵C为N*N的矩阵,N最大为1000,就算用快速幂也超时,但是因为C = A*B, 所以CN?N=ABAB-AB=AC′N?N?1B,C' = B*A, 为K*K的矩阵,K最大为6,完全可以接受. #include <cstdio> #inc

HDU 4965 Fast Matrix Calculation (矩阵快速幂取模----矩阵相乘满足结合律)

http://acm.hdu.edu.cn/showproblem.php?pid=4965 利用相乘的可结合性先算B*A,得到6*6的矩阵,利用矩阵快速幂取模即可水过. 1 #include<iostream> 2 #include<stdio.h> 3 #include<iostream> 4 #include<stdio.h> 5 #define N 1010 6 #define M 1010 7 #define K 6 8 using namespa

HDU 4965 Fast Matrix Calculation(矩阵高速幂)

题目大意:给你两个数字n和k,然后给你两个矩阵a是n*k的和b是k*n的,矩阵c = a*b,让你求c^(n*n). 直接求的话c是n*n的矩阵所以是1000*1000.会超时的啊. 能够转化一下:(a*b)^(n*n)=a*(b*a)^(n*n-1)*b.b*a能够得到一个k*k的矩阵,k非常小所以不会超时.高速幂一下就能够了啊. Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 13

HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

一种奇葩的写法,纪念一下当时的RE. 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <cmath> 6 #include <algorithm> 7 #include <string> 8 #include <queue> 9 #include <stack>

HDU 4965 Fast Matrix Caculation ( 矩阵乘法 + 矩阵快速幂 + 矩阵乘法的结合律 )

HDU 4965 Fast Matrix Calculation ( 矩阵乘法 + 矩阵快速幂 + 矩阵乘法的结合律 ) #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define MAX_SIZE 1001 #define CLR( a, b ) memset( a, b, sizeof(a) ) #define MOD 6 typedef long lo

HDU 4965 Fast Matrix Calculation 【矩阵】

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4965 题目大意:给你一个N*K的矩阵A以及一个K*N的矩阵B (4 <= N <= 1000)以及 (2 <=K <= 6),然后接下来四步: 算一个新的矩阵C=A*B 算M=C^ (N*N) 对于M中的每个元素%6 将M中每个元素加起来,算出和. 也就是求出A*B * A*B * A*B * A*B * A*B *--* A*B   但是A*B形成的矩阵是N*N,而N大小有可能是10

HDU 4965 Fast Matrix Calculation(矩阵快速幂)

HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次,可以变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个只有6x6,就可以用矩阵快速幂搞了 代码: #include <cstdio> #include <cstring> const int N = 1005; const int M = 10; int n, m; int A[N][M], B[M][N], C[M][M], CC[N]

HDU 4965 Fast Matrix Calculation(矩阵高速幂)

HDU 4965 Fast Matrix Calculation 题目链接 矩阵相乘为AxBxAxB...乘nn次.能够变成Ax(BxAxBxA...)xB,中间乘n n - 1次,这样中间的矩阵一个仅仅有6x6.就能够用矩阵高速幂搞了 代码: #include <cstdio> #include <cstring> const int N = 1005; const int M = 10; int n, m; int A[N][M], B[M][N], C[M][M], CC[N

hdu 4965 Fast Matrix Calculation(矩阵快速幂)2014多校训练第9场

Fast Matrix Calculation                                                                   Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem Description One day, Alice and Bob felt bored again, Bob knows Ali

HDOJ 4965 Fast Matrix Calculation

(AB)^n=A*(BA)^(n-1)^B Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 576    Accepted Submission(s): 297 Problem Description One day, Alice and Bob felt bored again, B