POJ 2234-Matches Game(博弈)

题目链接:点击打开链接

Nim博弈。裸题。必败状态为 n堆物品数目的异或值为0.否则必胜。(先手)

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cctype>
#include <vector>
#include <cstdio>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#define maxn 10100
#define _ll __int64
#define ll long long
#define INF 0x3f3f3f3f
#define Mod 1000000007
#define pp pair<int,int>
#define ull unsigned long long
using namespace std;
int main()
{
	int n,x,ok;
	while(~scanf("%d",&n))
	{
		scanf("%d",&ok);--n;
		while(n--){scanf("%d",&x);ok^=x;}
		if(ok)puts("Yes");
		else puts("No");
	}
    return 0;
}
时间: 2024-10-13 13:52:46

POJ 2234-Matches Game(博弈)的相关文章

POJ 2234 Matches Game(Nim博弈裸题)

Description Here is a simple game. In this game, there are several piles of matches and two players. The two player play in turn. In each turn, one can choose a pile and take away arbitrary number of matches from the pile (Of course the number of mat

POJ 2234 Matches Game 尼姆博弈

题目大意:尼姆博弈,判断是否先手必胜. 题目思路: 尼姆博弈:有n堆各a[]个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 获胜规则:ans=(a[1]^a[2] --^a[n]),若ans==0则后手必胜,否则先手必胜. #include<iostream> #include<algorithm> #include<cstring> #include<vector> #include<stdio.h>

POJ 2234 Matches Game(取火柴博弈1)

传送门 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int main() { int n; while(~scanf("%d",&n)) { int a,res=0; for(int i=0;i<n;i++) { scanf("%d",&a); res^

POJ 2234 Matches Game 博弈论水题 Nim模型

Description Here is a simple game. In this game, there are several piles of matches and two players. The two player play in turn. In each turn, one can choose a pile and take away arbitrary number of matches from the pile (Of course the number of mat

题解——POJ 2234 Matches Game

这道题也是一个博弈论 根据一个性质 对于\( Nim \)游戏,即双方可以任取石子的游戏,\( SG(x) = x \) 所以直接读入后异或起来输出就好了 代码 #include <cstdio> #include <algorithm> #include <cstring> using namespace std; int m; int main(){ while(scanf("%d",&m)!=EOF){ int ans=0,mid; f

【POJ】2234 Matches Game(博弈论)

http://poj.org/problem?id=2234 博弈论真是博大精深orz 首先我们仔细分析很容易分析出来,当只有一堆的时候,先手必胜:两堆并且相同的时候,先手必败,反之必胜. 根据博弈论的知识(论文 张一飞:<由感性认识到理性认识——透析一类搏弈游戏的解答过程>) 局面可以分解,且结果可以合并. 局面均是先手 当子局面是 胜 和 败,那么局面则为胜 当子局面是 败 和 胜,那么局面则为胜 当子局面是 败 和 败,那么局面则为败 当子局面为 胜 和 胜,那么局面为不确定 而这些性质

POJ 1067 威佐夫博弈

链接: http://poj.org/problem?id=1067 题意: 威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 题解: 威佐夫博弈(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 这种情况下是颇为复杂的.我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物

POJ 1067——威佐夫博弈

题目: Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者. Input 输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000. Output 输出

poj 2975 Nim(博弈)

Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5232   Accepted: 2444 Description Nim is a 2-player game featuring several piles of stones. Players alternate turns, and on his/her turn, a player’s move consists of removing one or mor