读书笔记-Autonomous Intelligent Vehicles(一)

Autonomous intelligent vehicles have to finish the basic procedures:

  • perceiving and modeling environment

  • localizing and building maps
  • planning paths and making decisions
  • controlling the vehicles within limit time for real-time purposes.

Meanwhile, we face the challenge of processing large amounts of data from multi-sensors, such as cameras, lidars, radars.

Our goal in writing this book is threefold:

  1. First, it creates an updated reference book of intelligent vehicles.

  2. Second, this book not only presents object/obstacle detection and recognition, but also introduces vehicle lateral and longitudinal control algorithms, which benefits the readers keen to learn broadly about intelligent vehicles.
  3. Finally, we put emphasis on high-level concepts, and at the same time provide the low-level details of implementation.

We try to link theory, algorithms, and implementation to promote intelligent vehicle research.

This book is divided into four parts.

  • The first part Autonomous Intelligent Vehicles presents the research motivation and purposes, the state-of-art of intelligent vehicles research. Also, we introduce the framework of intelligent vehicles.

  • The second part Environment Perception and Modeling which includes Road detection and tracking, Vehicle detection and tracking, Multiple-sensor based multiple-object tracking introduces environment perception and modeling.
  • The third part Vehicle Localization and Navigation which includes An integrated DGPS/IMU positioning approach, Vehicle navigation using global views presents vehicle navigation based on integrated GPS and INS.
  • The fourth part Advanced Vehicle Motion Control introduces vehicle lateral and longitudinal motion control.

The Key Technologies of Intelligent Vehicles:
 

  • Multi-sensor Fusion Based Environment Perception and Modeling

  • Vehicle Localization and Map Building
  • Path Planning and Decision-Making
  • Low-Level Motion Control

基于环境认知与建模的多维传感器数据融合

Figure 1.2 illustrates a general environment perception and modeling framework. From this framework, we can see that:

  • (i) The original data are collected by various sensors;

  • (ii) Various features are extracted from the original data, such as road (object) colors, lane edges, building contours;
  • (iii) Semantic objects are recognized using classifiers, and consist of lanes, signs, vehicles, pedestrians;
  • (iv) We can deduce driving contexts, and vehicle positions.
  1. Multi-sensor fusion
    Multi-sensor fusion is the basic framework of intelligent vehicles for better sensing surrounding environment structures, and detecting objects/obstacles. Roughly, the sensors used for surrounding environment perception are divided into two categories: active and passive ones. Active sensors include lidar, radar, ultrasonic and radio, while the commonly-used passive sensors are infrared and visual cameras. Different sensors are capable of providing different detection precision and range, and yielding different effects on environment. That is, combining various sensors could cover not only short-range but also long-range objects/obstacles, and also work in various weather conditions. Furthermore, the original data of different sensors can be fused in low-level fusion, high-level fusion, and hybrid fusion.

  2. Dynamic Environment Modeling
    Dynamic environment modeling based on moving on-vehicle cameras plays an important role in intelligent vehicles [17]. However, this is extremely challenging due to the combined effects of ego-motion, blur, light changing. Therefore, traditional methods for gradual illumination change, small motion objects, such as background subtraction, do not work well any more, even those that have been widely used in surveillance applications. Consequently, more and more approaches try to handle these issues [2, 17]. Unfortunately, it is still an open problem to reliably model and update background. To select different driving strategies, several broad scenarios are usually considered in path planning and decision-making, when navigating roads, intersections, parking lots, jammed intersections. Hence, scenario estimators are helpful for further decision-making, which is commonly used in the Urban Challenge.
  3. Object Detection and Tracking
    In general, in a driving environment, we are interested in static/dynamic obstacles, lane markings, traffic signs, vehicles, and pedestrians. Correspondingly, object detection and tracking are the key parts of environment perception and modeling.

通过多维传感器数据融合,有效实现对短距离、长距离的物体/障碍物的识别、跟踪,从而达到对环境的建模。可以看出,计算机视觉仍然是动态环境建模的挑战。

高精度定位和地图的构建

The goal of vehicle localization and map building is to generate a global map by combining the environment model, a local map and global information.

For vehicle localization, we face several challenges as follows:

  • (i) Usually, the absolute positions from GPS/DGPS and its variants are insufficient due to signal transmission;

  • (ii) The path planning and decision-making module needs more than just the vehicle absolute position as input;
  • (iii) Sensor noises greatly affect the accuracy of vehicle localization.

Regarding the first issue, though the GPS and its variants have been widely used in vehicle localization, its performance could degrade due to signal blockages and reflections of buildings and trees. In the worst case, Inertia Navigation System (INS) can maintain a position solution.

As for the second issue, local maps fusing laser, radar, and vision data with vehicle states are used to locate and track both static/dynamic obstacles and lanes. Furthermore, global maps could contain lane geometric information, lane makings, step signs, parking lots, check points and provide global environment information.

Referring to the third issue, various noise modules are considered to reduce localization error.

SLAM是目前研究的比较多的机器人定位和地图构建的算法。下面是结合ROS和SLAM的一些展示:



 

路径规划和决策制定

Global path planning is to find the fastest and safest way to get from the initial position to the goal position, while local path planning is to avoid obstacles for safe navigation.

Road following, making lane-changes, parking, obstacle avoidance, recovering from abnormal conditions. In many cases, decision-making depends of context driving, especially in driver assistance systems.

目前在高德、百度中用到路径规划算法是否可以通用呢?

低层运动控制

Its typical applications consist of automatic vehicle following/platoon, Adaptive Cruise Control (ACC), lane following. Vehicle control can be broadly divided into two categories: lateral control and longitudinal control(Fig. 1.4). The longitudinal control is related to distance–velocity control between vehicles for safety and comfort purposes. Here some assumptions are made about the state of vehicles and the parameters of models, such as in the PATH project. The lateral control isto maintain the vehicle’s position in the lane center, and it can be used for vehicle guidance assistance. Moreover, it is well known that the lateral and longitudinal dynamics of a vehicle are coupled in a combined lateral and longitudinal control, where the coupling degree is a function of the tire and vehicle parameters. In general, there are two different approaches to design vehicle controllers. One way to do this is to mimic driver operations, and the other is based on vehicle dynamic models and control strategies.

从目前业界动态来看,国内做自动驾驶、无人驾驶创业的厂商大多从ADAS切入,有市场的原因,比如目前普通车主能接受的汽车更加安全、智能,但还没到自动驾驶的程度;有技术的原因,移动设备的数据处理能力以及算法的实时性依然有待提升。如上所述,类似ADAS的运动控制可以分为横向和纵向的控制,横向运动控制主要是使车辆保持在道路中间,如车道保持系统;纵向运动控制基于距离和速度,是行驶安全性、舒适性的关键,自适应巡航、防碰撞预警系统等控制都属于纵向运动控制。

时间: 2024-11-05 13:35:57

读书笔记-Autonomous Intelligent Vehicles(一)的相关文章

【英语魔法俱乐部——读书笔记】 2 中级句型-复句&合句(Complex Sentences、Compound Sentences)

[英语魔法俱乐部——读书笔记] 2 中级句型-复句&合句(Complex Sentences.Compound Sentences):(2.1)名词从句.(2.2)副词从句.(2.3)关系从句.(2.4)对等连接词与对等从句 2.0 中级句型-复句&合句 2.0.1 复句(Complex Sentences):将一个句子改造成类似名词.形容词.副词的形态,并放到另一个句子中使用,该句子就称为从属从句,另一句则称为主要从句,而合并后的具有主从之分的句子就称为复句.复句的从属从句主要有:名词从

【英语魔法俱乐部——读书笔记】 3 高级句型-简化从句&倒装句(Reduced Clauses、Inverted Sentences) 【完结】

[英语魔法俱乐部——读书笔记] 3 高级句型-简化从句&倒装句(Reduced Clauses.Inverted Sentences):(3.1)从属从句简化的通则.(3.2)形容词从句简化.(3.3)名词从句简化.(3.4)副词从句简化.(3.5)简化从句练习.(3.6)倒装句 3.1 从属从句简化的通则(Generally Reduction Rules of Dependent Clause) 3.1.1 简化从句:英语语法以句子为研究对象,而其句型也分为简单句.复句和合句之分,其中简单句

《C#图解教程》读书笔记之三:方法

本篇已收录至<C#图解教程>读书笔记目录贴,点击访问该目录可获取更多内容. 一.方法那些事儿 (1)方法的结构:方法头-指定方法的特征,方法体-可执行代码的语句序列: (2)方法的调用:参数.值参数.引用参数.输出参数.参数数组: ①参数: 形参-本地变量,声明在参数列表中:形参的值在代码开始之前被初始化: 实参-实参的值用于初始化形参: ②值参数: 为形参在栈上分配内存,将实参的值复制到形参: ③引用参数: 不为形参在栈上分配内存,形参的参数名作为实参变量的别名指向同一位置,必须使用ref关

《C#图解教程》读书笔记之五:委托和事件

本篇已收录至<C#图解教程>读书笔记目录贴,点击访问该目录可获取更多内容. 一.委托初窥:一个拥有方法的对象 (1)本质:持有一个或多个方法的对象:委托和典型的对象不同,执行委托实际上是执行它所"持有"的方法.如果从C++的角度来理解委托,可以将其理解为一个类型安全的.面向对象的函数指针. (2)如何使用委托? ①声明委托类型(delegate关键字) ②使用该委托类型声明一个委托变量 ③为委托类型增加方法 ④调用委托执行方法 (3)委托的恒定性: 组合委托.为委托+=增加

《Effective C++》读书笔记汇总

我之前边读<Effective C++>边写下每个条款的读书笔记,这一版是C++11之前的版本.这里我将每个条款令我印象深刻的点小结一下. 1.C++包括:Plain C(面向过程).OOP(面向对象).模板(泛型和模板元编程).STL(C++标准库). 2.用inline.enum.const代替#define.#define定义的宏,一旦复杂起来,高手都很难掌控.不要带入C的习惯. 3.灵活使用const前缀.不需要进行改变的数据加上const前缀.指针的const前缀有两种形式,cons

【读书笔记】《Linux内核设计与实现》内核同步介绍&内核同步方法

简要做个笔记,以备忘. 需同步的原因是,我们并发访问了共享资源.我们将访问或操作共享资源的代码段称"临界区",如果两个执行线程处于同一临界区中同时执行,称"竞争条件".这里术语执行线程指任何正在执行的代码实例,如一个在内核执行的进程.一个中断处理程序或一个内核线程. 举个简单例子,i++操作.该操作可以转换为下面的机器指令序列: 1.得到当前变量i的值,并保存到一个寄存器. 2.将寄存器的值加1. 3.将i的新值写回到内存中. 当两个线程同时进入这个临界区,若i初值

鸟哥的Linux私房菜 基础学习篇读书笔记(7):Linux文件与目录管理

这一章主要讲述的是如何操作与管理Linux系统中的文件和目录,主要包括目录间的切换,目录的创建与删除,文件的创建与删除,文件的查找,文件内容的查看等等. 前一章中已经讲过相对路径以及绝对路径,绝对路径就是指从根目录("/")开始写起的路径名,而相对路径绝不会由根目录开始写起,相反,相对路径是相对于当前工作目录的路径名.Linux操作系统中有几个特殊的目录: . 代表此层目录: .. 代表上一层目录: - 代表前一个工作目录: ~ 代表当前用户身份所在的主文件夹: ~account 代表

《30天自制操作系统》读书笔记(2)hello, world

让系统跑起来 要写一个操作系统,我们首先要有一个储存系统的介质,原版书似乎是06年出版的,可惜那时候没有电脑,没想到作者用的还是软盘,现在的电脑谁有软驱?不得已我使用一张128M的SD卡来代替,而事实上你用的是U盘还是软盘对我们的操作系统没有影响,缺点是你的U盘刷入系统后容量只能是1440 MB,即当年流行的3.5英寸软盘的大小,当然不用担心,再格式化一次(用DiskGeniu),就可以恢复. 我做事情的话,总是怕自己的努力的结果白费了,害怕辛辛苦苦看完这本书但是发现做出来的东西现在根本没法用,

《巴菲特与索罗斯的投资习惯》读书笔记

巴菲特与索罗斯的投资习惯 收益与风险 收益越高风险越大,或者风险越大收益越高都是没有道理的,风险和收益逻辑上不一定是正相关的,只不过收益越高,人们愿意承担的风险越高而已. 降低风险的同时提高收益是不矛盾的.但风险控制应优先于收益. 同样的事情,对你来说是危险的,但对于高手来说则没有风险,因此,为了降低风险,尽力成为高手吧 关于投资 赚钱只是投资的目的而已,投资策略才是投资的手段. 只是将注意力集中在目的上是没有意义的,因为它只是你的手段所产生的自然结果. 因此我们需要把注意力几种在对投资策略的调